Application Scheme of Clinical Trial Questionnaire Pre Recruitment Integrating LLM and Knowledge Graph

方案(数学) 图形 计算机科学 知识管理 医学 心理学 数学 理论计算机科学 数学分析
作者
Chen ZiHang,Qianmin Su,Cheng GaoYi,Jihan Huang,Ying Li
标识
DOI:10.2139/ssrn.4713177
摘要

Background: The establishment of inclusion and exclusion criteria, which serve to identify participants aligning with specific research requirements, plays a pivotal role in safeguarding both the safety and research validity of clinical trials. Currently, the recruitment process for clinical trials is relatively passive, resulting in a failure to promptly attain a sufficient number of eligible participants. In recent years, the development of large language models (LLMs) and knowledge graphs has presented new approaches to pre-screening and recruitment for clinical trials, facilitating the optimization of recruitment efficiency and increasing participant engagement.Method: This paper proposes an application scheme for the pre-recruitment phase of clinical trials, leveraging the technical advantages of knowledge graphs and large language models (LLMs). The introduction of LLM into the pre-recruitment stage significantly enhances the system's intelligence. The application scheme encompasses the automated generation of pre-recruitment questionnaires, automatic assessment of candidate eligibility based on inclusion and exclusion criteria, and the provision of knowledge-based question and answer services related to clinical medical terminology.Results: ChatGLM-130B and ChatGPT-3.5 have demonstrated exceptional proficiency in the generation of questionnaires. 6.89% of questionnaires generated by ChatGLM-130B manifested issues related to JSON output formatting, while 3.44% of questionnaires generated by ChatGPT-3.5 exhibited duplicate questions. The accuracy rates for evaluating questionnaire responses were 90.47% for ChatGLM-130B and 91.66% for ChatGPT-3.5. The application has been implemented in the pilot phase at Shanghai University of Traditional Chinese Medicine, Longhua Hospital.Summary: This solution has automated the process from questionnaire generation to patient eligibility determination, which can significantly enhance recruitment efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陈增飞发布了新的文献求助10
刚刚
1秒前
Cc完成签到,获得积分10
1秒前
1秒前
海人完成签到,获得积分10
3秒前
5秒前
sunny发布了新的文献求助10
5秒前
einuo发布了新的文献求助10
6秒前
无尘发布了新的文献求助10
6秒前
小徐完成签到 ,获得积分10
6秒前
赵倩完成签到,获得积分10
8秒前
zpj完成签到 ,获得积分10
8秒前
能干的小刺猬完成签到,获得积分10
9秒前
1MENINA1完成签到 ,获得积分10
9秒前
俊逸书琴完成签到 ,获得积分10
9秒前
蜗牛二世完成签到 ,获得积分10
9秒前
Curllen完成签到,获得积分10
9秒前
10秒前
桑梓发布了新的文献求助10
10秒前
bigpluto完成签到,获得积分10
10秒前
roger完成签到,获得积分10
11秒前
11秒前
14秒前
袖贤完成签到,获得积分10
14秒前
风趣丝完成签到,获得积分10
14秒前
摇光完成签到,获得积分10
14秒前
耍酷的斩完成签到,获得积分20
15秒前
陶ni吉吉完成签到,获得积分10
15秒前
晴天霹雳3732完成签到,获得积分10
15秒前
Zhang发布了新的文献求助10
15秒前
幽默刺猬发布了新的文献求助30
15秒前
一颗橙子发布了新的文献求助10
16秒前
鹏程完成签到,获得积分10
16秒前
16秒前
Jccc完成签到,获得积分10
17秒前
风趣丝发布了新的文献求助10
17秒前
李健应助发嗲的高跟鞋采纳,获得10
17秒前
迪鸣完成签到,获得积分10
21秒前
roger发布了新的文献求助10
22秒前
22秒前
高分求助中
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Die Gottesanbeterin: Mantis religiosa: 656 400
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3165183
求助须知:如何正确求助?哪些是违规求助? 2816164
关于积分的说明 7911772
捐赠科研通 2475878
什么是DOI,文献DOI怎么找? 1318401
科研通“疑难数据库(出版商)”最低求助积分说明 632143
版权声明 602388