AntiBP3: A Method for Predicting Antibacterial Peptides against Gram-Positive/Negative/Variable Bacteria

抗菌肽 细菌 微生物学 革兰氏阴性菌 革兰氏阳性菌 抗菌活性 化学 生物 抗生素 生物化学 大肠杆菌 遗传学 基因
作者
Nisha Bajiya,Shubham Choudhury,Anjali Dhall,Gajendra P. S. Raghava
出处
期刊:Antibiotics [MDPI AG]
卷期号:13 (2): 168-168
标识
DOI:10.3390/antibiotics13020168
摘要

Most of the existing methods developed for predicting antibacterial peptides (ABPs) are mostly designed to target either gram-positive or gram-negative bacteria. In this study, we describe a method that allows us to predict ABPs against gram-positive, gram-negative, and gram-variable bacteria. Firstly, we developed an alignment-based approach using BLAST to identify ABPs and achieved poor sensitivity. Secondly, we employed a motif-based approach to predict ABPs and obtained high precision with low sensitivity. To address the issue of poor sensitivity, we developed alignment-free methods for predicting ABPs using machine/deep learning techniques. In the case of alignment-free methods, we utilized a wide range of peptide features that include different types of composition, binary profiles of terminal residues, and fastText word embedding. In this study, a five-fold cross-validation technique has been used to build machine/deep learning models on training datasets. These models were evaluated on an independent dataset with no common peptide between training and independent datasets. Our machine learning-based model developed using the amino acid binary profile of terminal residues achieved maximum AUC 0.93, 0.98, and 0.94 for gram-positive, gram-negative, and gram-variable bacteria, respectively, on an independent dataset. Our method performs better than existing methods when compared with existing approaches on an independent dataset. A user-friendly web server, standalone package and pip package have been developed to facilitate peptide-based therapeutics.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
nizi完成签到,获得积分10
刚刚
kiki完成签到 ,获得积分10
刚刚
打打应助zwk采纳,获得10
刚刚
valorb完成签到,获得积分0
1秒前
酸色黑樱桃完成签到,获得积分10
1秒前
谦让谷菱完成签到,获得积分20
1秒前
张文杰完成签到 ,获得积分10
1秒前
希望天下0贩的0应助YCYD采纳,获得200
1秒前
人云亦云完成签到,获得积分10
2秒前
Zzz完成签到,获得积分10
2秒前
2秒前
3秒前
Lucas应助sea采纳,获得10
3秒前
222完成签到,获得积分10
4秒前
liweb完成签到,获得积分10
4秒前
迷人耗子精完成签到,获得积分10
5秒前
大个应助zj采纳,获得30
5秒前
Joker_Li完成签到,获得积分10
6秒前
天天快乐应助勤恳锅包肉采纳,获得10
6秒前
专注若蕊完成签到,获得积分10
6秒前
标致的山水完成签到 ,获得积分10
6秒前
7秒前
John发布了新的文献求助10
7秒前
科研通AI6应助τ涛采纳,获得10
7秒前
7秒前
NANA完成签到,获得积分20
8秒前
贺丞完成签到,获得积分10
8秒前
9秒前
小权拳的权完成签到,获得积分10
9秒前
9秒前
ppttyy完成签到 ,获得积分10
10秒前
10秒前
余烬发布了新的文献求助10
10秒前
NexusExplorer应助碟子采纳,获得10
10秒前
10秒前
11秒前
yuanyuan发布了新的文献求助10
11秒前
serendipity发布了新的文献求助10
12秒前
尖尖角完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5651671
求助须知:如何正确求助?哪些是违规求助? 4785545
关于积分的说明 15054930
捐赠科研通 4810310
什么是DOI,文献DOI怎么找? 2573067
邀请新用户注册赠送积分活动 1528952
关于科研通互助平台的介绍 1487935