AntiBP3: A Method for Predicting Antibacterial Peptides against Gram-Positive/Negative/Variable Bacteria

抗菌肽 细菌 微生物学 革兰氏阴性菌 革兰氏阳性菌 抗菌活性 化学 生物 抗生素 生物化学 大肠杆菌 遗传学 基因
作者
Nisha Bajiya,Shubham Choudhury,Anjali Dhall,Gajendra P. S. Raghava
出处
期刊:Antibiotics [MDPI AG]
卷期号:13 (2): 168-168
标识
DOI:10.3390/antibiotics13020168
摘要

Most of the existing methods developed for predicting antibacterial peptides (ABPs) are mostly designed to target either gram-positive or gram-negative bacteria. In this study, we describe a method that allows us to predict ABPs against gram-positive, gram-negative, and gram-variable bacteria. Firstly, we developed an alignment-based approach using BLAST to identify ABPs and achieved poor sensitivity. Secondly, we employed a motif-based approach to predict ABPs and obtained high precision with low sensitivity. To address the issue of poor sensitivity, we developed alignment-free methods for predicting ABPs using machine/deep learning techniques. In the case of alignment-free methods, we utilized a wide range of peptide features that include different types of composition, binary profiles of terminal residues, and fastText word embedding. In this study, a five-fold cross-validation technique has been used to build machine/deep learning models on training datasets. These models were evaluated on an independent dataset with no common peptide between training and independent datasets. Our machine learning-based model developed using the amino acid binary profile of terminal residues achieved maximum AUC 0.93, 0.98, and 0.94 for gram-positive, gram-negative, and gram-variable bacteria, respectively, on an independent dataset. Our method performs better than existing methods when compared with existing approaches on an independent dataset. A user-friendly web server, standalone package and pip package have been developed to facilitate peptide-based therapeutics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
今后应助白华苍松采纳,获得10
刚刚
跳跃乘风发布了新的文献求助20
刚刚
不舍天真发布了新的文献求助20
1秒前
坚强的樱发布了新的文献求助10
1秒前
温暖以蓝发布了新的文献求助10
1秒前
1秒前
wanci应助幸福胡萝卜采纳,获得10
1秒前
1秒前
Ych发布了新的文献求助10
1秒前
gjy完成签到,获得积分10
2秒前
vision完成签到,获得积分10
2秒前
小小发布了新的文献求助10
2秒前
Katie完成签到,获得积分10
2秒前
LT发布了新的文献求助10
2秒前
3秒前
科研人完成签到,获得积分10
3秒前
FashionBoy应助彭彭采纳,获得10
3秒前
赤邪发布了新的文献求助10
4秒前
Owen应助lwei采纳,获得10
4秒前
shelly0621给shelly0621的求助进行了留言
4秒前
青木蓝完成签到,获得积分10
4秒前
4秒前
迅速泽洋完成签到,获得积分10
5秒前
dan1029完成签到,获得积分10
5秒前
小王完成签到,获得积分10
5秒前
李繁蕊发布了新的文献求助10
5秒前
6秒前
6秒前
隐形曼青应助hjj采纳,获得10
6秒前
susu完成签到,获得积分10
7秒前
8秒前
caicai发布了新的文献求助10
8秒前
无情的菲鹰完成签到,获得积分10
8秒前
兔兔完成签到 ,获得积分10
8秒前
打打应助勤奋的蜗牛采纳,获得10
8秒前
9秒前
jery完成签到,获得积分10
9秒前
乐乐应助润润轩轩采纳,获得10
10秒前
指哪打哪完成签到,获得积分10
10秒前
弄井发布了新的文献求助30
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762