AntiBP3: A Method for Predicting Antibacterial Peptides against Gram-Positive/Negative/Variable Bacteria

抗菌肽 细菌 微生物学 革兰氏阴性菌 革兰氏阳性菌 抗菌活性 化学 生物 抗生素 生物化学 大肠杆菌 遗传学 基因
作者
Nisha Bajiya,Shubham Choudhury,Anjali Dhall,Gajendra P. S. Raghava
出处
期刊:Antibiotics [MDPI AG]
卷期号:13 (2): 168-168
标识
DOI:10.3390/antibiotics13020168
摘要

Most of the existing methods developed for predicting antibacterial peptides (ABPs) are mostly designed to target either gram-positive or gram-negative bacteria. In this study, we describe a method that allows us to predict ABPs against gram-positive, gram-negative, and gram-variable bacteria. Firstly, we developed an alignment-based approach using BLAST to identify ABPs and achieved poor sensitivity. Secondly, we employed a motif-based approach to predict ABPs and obtained high precision with low sensitivity. To address the issue of poor sensitivity, we developed alignment-free methods for predicting ABPs using machine/deep learning techniques. In the case of alignment-free methods, we utilized a wide range of peptide features that include different types of composition, binary profiles of terminal residues, and fastText word embedding. In this study, a five-fold cross-validation technique has been used to build machine/deep learning models on training datasets. These models were evaluated on an independent dataset with no common peptide between training and independent datasets. Our machine learning-based model developed using the amino acid binary profile of terminal residues achieved maximum AUC 0.93, 0.98, and 0.94 for gram-positive, gram-negative, and gram-variable bacteria, respectively, on an independent dataset. Our method performs better than existing methods when compared with existing approaches on an independent dataset. A user-friendly web server, standalone package and pip package have been developed to facilitate peptide-based therapeutics.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
顾矜应助Fjun采纳,获得10
1秒前
领导范儿应助小李采纳,获得10
1秒前
linnnna发布了新的文献求助10
1秒前
大模型应助Chali采纳,获得10
2秒前
2秒前
2秒前
星辰大海应助小夭采纳,获得10
2秒前
希望天下0贩的0应助家伟采纳,获得10
2秒前
上官若男应助Lorry采纳,获得10
3秒前
量子星尘发布了新的文献求助10
3秒前
yy发布了新的文献求助10
4秒前
4秒前
07关注了科研通微信公众号
4秒前
wanci应助sanmumu采纳,获得10
4秒前
5秒前
1900tdlemon发布了新的文献求助10
6秒前
打打应助大方的冰旋采纳,获得10
6秒前
6秒前
Li发布了新的文献求助10
6秒前
blackgoat完成签到,获得积分10
6秒前
传奇3应助液氧采纳,获得10
6秒前
ikouyo完成签到 ,获得积分10
7秒前
7秒前
8秒前
橘子发布了新的文献求助10
8秒前
sen完成签到,获得积分10
9秒前
Chillym完成签到 ,获得积分10
9秒前
无极微光应助柠檬不萌采纳,获得20
9秒前
9秒前
9秒前
9秒前
10秒前
所所应助Wei采纳,获得10
10秒前
小强发布了新的文献求助10
10秒前
嘎嘎完成签到,获得积分20
10秒前
Jerry发布了新的文献求助10
11秒前
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5728317
求助须知:如何正确求助?哪些是违规求助? 5312368
关于积分的说明 15313794
捐赠科研通 4875546
什么是DOI,文献DOI怎么找? 2618882
邀请新用户注册赠送积分活动 1568431
关于科研通互助平台的介绍 1525095