AntiBP3: A Method for Predicting Antibacterial Peptides against Gram-Positive/Negative/Variable Bacteria

抗菌肽 细菌 微生物学 革兰氏阴性菌 革兰氏阳性菌 抗菌活性 化学 生物 抗生素 生物化学 大肠杆菌 遗传学 基因
作者
Nisha Bajiya,Shubham Choudhury,Anjali Dhall,Gajendra P. S. Raghava
出处
期刊:Antibiotics [Multidisciplinary Digital Publishing Institute]
卷期号:13 (2): 168-168
标识
DOI:10.3390/antibiotics13020168
摘要

Most of the existing methods developed for predicting antibacterial peptides (ABPs) are mostly designed to target either gram-positive or gram-negative bacteria. In this study, we describe a method that allows us to predict ABPs against gram-positive, gram-negative, and gram-variable bacteria. Firstly, we developed an alignment-based approach using BLAST to identify ABPs and achieved poor sensitivity. Secondly, we employed a motif-based approach to predict ABPs and obtained high precision with low sensitivity. To address the issue of poor sensitivity, we developed alignment-free methods for predicting ABPs using machine/deep learning techniques. In the case of alignment-free methods, we utilized a wide range of peptide features that include different types of composition, binary profiles of terminal residues, and fastText word embedding. In this study, a five-fold cross-validation technique has been used to build machine/deep learning models on training datasets. These models were evaluated on an independent dataset with no common peptide between training and independent datasets. Our machine learning-based model developed using the amino acid binary profile of terminal residues achieved maximum AUC 0.93, 0.98, and 0.94 for gram-positive, gram-negative, and gram-variable bacteria, respectively, on an independent dataset. Our method performs better than existing methods when compared with existing approaches on an independent dataset. A user-friendly web server, standalone package and pip package have been developed to facilitate peptide-based therapeutics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
孤独的哈密瓜数据线完成签到 ,获得积分10
1秒前
2秒前
欢呼的未来完成签到,获得积分20
3秒前
鸣笛应助人走茶凉采纳,获得10
5秒前
7秒前
sssss发布了新的文献求助10
7秒前
舒心衣发布了新的文献求助10
10秒前
上官若男应助科研通管家采纳,获得10
10秒前
SYLH应助科研通管家采纳,获得20
10秒前
10秒前
wanci应助科研通管家采纳,获得10
11秒前
桐桐应助小后院采纳,获得10
11秒前
SYLH应助科研通管家采纳,获得20
11秒前
11秒前
11秒前
11秒前
SYLH应助科研通管家采纳,获得20
11秒前
pluto应助灰底爆米花采纳,获得10
11秒前
AJ完成签到,获得积分10
13秒前
14秒前
Capacition6完成签到,获得积分10
15秒前
微笑的井完成签到 ,获得积分10
16秒前
17秒前
17秒前
18秒前
18秒前
18秒前
爱吃饼干的土拨鼠完成签到,获得积分10
18秒前
沉静雁兰应助chenling采纳,获得10
19秒前
脑洞疼应助gwt采纳,获得10
19秒前
卡坦精发布了新的文献求助10
20秒前
白木华完成签到,获得积分10
22秒前
Woaimama724发布了新的文献求助10
22秒前
csj发布了新的文献求助10
22秒前
太阳花发布了新的文献求助10
22秒前
23秒前
xxz发布了新的文献求助10
23秒前
23秒前
活泼万言发布了新的文献求助10
24秒前
勤奋丹萱完成签到 ,获得积分10
24秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993068
求助须知:如何正确求助?哪些是违规求助? 3533981
关于积分的说明 11264261
捐赠科研通 3273665
什么是DOI,文献DOI怎么找? 1806134
邀请新用户注册赠送积分活动 883003
科研通“疑难数据库(出版商)”最低求助积分说明 809644