AntiBP3: A Method for Predicting Antibacterial Peptides against Gram-Positive/Negative/Variable Bacteria

抗菌肽 细菌 微生物学 革兰氏阴性菌 革兰氏阳性菌 抗菌活性 化学 生物 抗生素 生物化学 大肠杆菌 遗传学 基因
作者
Nisha Bajiya,Shubham Choudhury,Anjali Dhall,Gajendra P. S. Raghava
出处
期刊:Antibiotics [MDPI AG]
卷期号:13 (2): 168-168
标识
DOI:10.3390/antibiotics13020168
摘要

Most of the existing methods developed for predicting antibacterial peptides (ABPs) are mostly designed to target either gram-positive or gram-negative bacteria. In this study, we describe a method that allows us to predict ABPs against gram-positive, gram-negative, and gram-variable bacteria. Firstly, we developed an alignment-based approach using BLAST to identify ABPs and achieved poor sensitivity. Secondly, we employed a motif-based approach to predict ABPs and obtained high precision with low sensitivity. To address the issue of poor sensitivity, we developed alignment-free methods for predicting ABPs using machine/deep learning techniques. In the case of alignment-free methods, we utilized a wide range of peptide features that include different types of composition, binary profiles of terminal residues, and fastText word embedding. In this study, a five-fold cross-validation technique has been used to build machine/deep learning models on training datasets. These models were evaluated on an independent dataset with no common peptide between training and independent datasets. Our machine learning-based model developed using the amino acid binary profile of terminal residues achieved maximum AUC 0.93, 0.98, and 0.94 for gram-positive, gram-negative, and gram-variable bacteria, respectively, on an independent dataset. Our method performs better than existing methods when compared with existing approaches on an independent dataset. A user-friendly web server, standalone package and pip package have been developed to facilitate peptide-based therapeutics.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
风中冷风发布了新的文献求助10
2秒前
香蕉觅云应助LQ采纳,获得50
2秒前
3秒前
3秒前
4秒前
llynvxia发布了新的文献求助30
5秒前
赘婿应助宇文听南采纳,获得10
5秒前
6秒前
6秒前
卡酷一完成签到 ,获得积分10
6秒前
传奇3应助亓大大采纳,获得10
7秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
CodeCraft应助ZHAOyifan采纳,获得10
9秒前
10秒前
10秒前
10秒前
kiki完成签到 ,获得积分10
10秒前
whykm91发布了新的文献求助10
11秒前
11秒前
成就的幻竹完成签到,获得积分10
11秒前
Jia发布了新的文献求助10
12秒前
游泳的虾饺完成签到,获得积分10
12秒前
科目三应助可靠的寒风采纳,获得10
12秒前
可爱的函函应助芝士采纳,获得10
13秒前
CipherSage应助芝士采纳,获得10
13秒前
orixero应助芝士采纳,获得10
13秒前
领导范儿应助芝士采纳,获得10
13秒前
ding应助芝士采纳,获得10
13秒前
小蘑菇应助芝士采纳,获得10
13秒前
李爱国应助芝士采纳,获得10
13秒前
Yang2完成签到,获得积分10
14秒前
14秒前
14秒前
Akim应助失眠毛衣采纳,获得10
14秒前
14秒前
15秒前
量子星尘发布了新的文献求助10
15秒前
15秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5743528
求助须知:如何正确求助?哪些是违规求助? 5414569
关于积分的说明 15347814
捐赠科研通 4884209
什么是DOI,文献DOI怎么找? 2625665
邀请新用户注册赠送积分活动 1574515
关于科研通互助平台的介绍 1531418