亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

AntiBP3: A Method for Predicting Antibacterial Peptides against Gram-Positive/Negative/Variable Bacteria

抗菌肽 细菌 微生物学 革兰氏阴性菌 革兰氏阳性菌 抗菌活性 化学 生物 抗生素 生物化学 大肠杆菌 遗传学 基因
作者
Nisha Bajiya,Shubham Choudhury,Anjali Dhall,Gajendra P. S. Raghava
出处
期刊:Antibiotics [MDPI AG]
卷期号:13 (2): 168-168
标识
DOI:10.3390/antibiotics13020168
摘要

Most of the existing methods developed for predicting antibacterial peptides (ABPs) are mostly designed to target either gram-positive or gram-negative bacteria. In this study, we describe a method that allows us to predict ABPs against gram-positive, gram-negative, and gram-variable bacteria. Firstly, we developed an alignment-based approach using BLAST to identify ABPs and achieved poor sensitivity. Secondly, we employed a motif-based approach to predict ABPs and obtained high precision with low sensitivity. To address the issue of poor sensitivity, we developed alignment-free methods for predicting ABPs using machine/deep learning techniques. In the case of alignment-free methods, we utilized a wide range of peptide features that include different types of composition, binary profiles of terminal residues, and fastText word embedding. In this study, a five-fold cross-validation technique has been used to build machine/deep learning models on training datasets. These models were evaluated on an independent dataset with no common peptide between training and independent datasets. Our machine learning-based model developed using the amino acid binary profile of terminal residues achieved maximum AUC 0.93, 0.98, and 0.94 for gram-positive, gram-negative, and gram-variable bacteria, respectively, on an independent dataset. Our method performs better than existing methods when compared with existing approaches on an independent dataset. A user-friendly web server, standalone package and pip package have been developed to facilitate peptide-based therapeutics.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shou完成签到 ,获得积分10
2秒前
whardon发布了新的文献求助10
3秒前
8秒前
whardon完成签到,获得积分10
12秒前
twk完成签到,获得积分10
15秒前
34秒前
开心惜梦完成签到,获得积分10
36秒前
Mario发布了新的文献求助10
39秒前
51秒前
日光倾城完成签到 ,获得积分10
53秒前
Criminology34应助科研通管家采纳,获得10
57秒前
Criminology34应助科研通管家采纳,获得10
57秒前
Mario完成签到,获得积分10
58秒前
万能图书馆应助LucyMartinez采纳,获得10
1分钟前
1分钟前
1分钟前
LucyMartinez发布了新的文献求助10
1分钟前
1分钟前
1分钟前
Magic麦发布了新的文献求助10
1分钟前
1分钟前
庾稀给庾稀的求助进行了留言
1分钟前
hb发布了新的文献求助10
1分钟前
1分钟前
1分钟前
伊力扎提发布了新的文献求助10
1分钟前
伊力扎提完成签到,获得积分10
1分钟前
1分钟前
2分钟前
shou关注了科研通微信公众号
2分钟前
sj发布了新的文献求助10
2分钟前
sj完成签到,获得积分10
2分钟前
2分钟前
shou发布了新的文献求助10
2分钟前
2分钟前
2分钟前
充电宝应助哭泣的擎汉采纳,获得10
2分钟前
刘xy发布了新的文献求助10
2分钟前
Magic麦完成签到,获得积分10
2分钟前
2分钟前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5746732
求助须知:如何正确求助?哪些是违规求助? 5438326
关于积分的说明 15355815
捐赠科研通 4886762
什么是DOI,文献DOI怎么找? 2627407
邀请新用户注册赠送积分活动 1575892
关于科研通互助平台的介绍 1532625