Assessing question characteristic influences on ChatGPT's performance and response-explanation consistency: Insights from Taiwan's Nursing Licensing Exam

一致性(知识库) 考试(生物学) 心理学 逻辑回归 护士教育 优势比 等级制度 护理部 可能性 医学 医学教育 计算机科学 病理 人工智能 古生物学 经济 内科学 市场经济 生物
作者
Mei-Chin Su,Li-En Lin,Lihwa Lin,Yu‐Chun Chen
出处
期刊:International Journal of Nursing Studies [Elsevier]
卷期号:153: 104717-104717 被引量:32
标识
DOI:10.1016/j.ijnurstu.2024.104717
摘要

Investigates the integration of artificial intelligence tool, specifically ChatGPT, in nursing education, addressing its effectiveness in exam preparation and self-assessment. This study aims to evaluate the performance of ChatGPT, one of the most promising artificial intelligence-driven linguistic understanding tools in answering question banks for nursing licensing examination preparation. It further analyzes question characteristics that might impact the accuracy of ChatGPT-generated answers and examines its reliability through human expert reviews. Cross-sectional survey comparing ChatGPT-generated answers and their explanations. 400 questions from Taiwan's 2022 Nursing Licensing Exam. The study analyzed 400 questions from five distinct subjects of Taiwan's 2022 Nursing Licensing Exam using the ChatGPT model which provided answers and in-depth explanations for each question. The impact of various question characteristics, such as type and cognitive level, on the accuracy of the ChatGPT-generated responses was assessed using logistic regression analysis. Additionally, human experts evaluated the explanations for each question, comparing them with the ChatGPT-generated answers to determine consistency. ChatGPT exhibited overall accuracy at 80.75 % for Taiwan's National Nursing Exam, which passes the exam. The accuracy of ChatGPT-generated answers diverged significantly across test subjects, demonstrating a hierarchy ranging from General Medicine at 88.75 %, Medical-Surgical Nursing at 80.0 %, Psychology and Community Nursing at 70.0 %, Obstetrics and Gynecology Nursing at 67.5 %, down to Basic Nursing at 63.0 %. ChatGPT had a higher probability of eliciting incorrect responses for questions with certain characteristics, notably those with clinical vignettes [Odds ratio 2.19, 95 % confidence interval 1.24–3.87, P = 0.007] and complex multiple-choice questions [Odds ratio 2.37, 95 % confidence interval 1.00–5.60, P = 0.049]. Furthermore, 14.25 % of ChatGPT-generated answers were inconsistent with their explanations, leading to a reduction in the overall accuracy to 74 %. This study reveals the ChatGPT's capabilities and limitations in nursing exam preparation, underscoring its potential as an auxiliary educational tool. It highlights the model's varied performance across different question types and notable inconsistencies between its answers and explanations. The study contributes significantly to the understanding of artificial intelligence in learning environments, guiding the future development of more effective and reliable artificial intelligence-based educational technologies. New study reveals ChatGPT's potential and challenges in nursing education: Achieves 80.75 % accuracy in exam prep but faces hurdles with complex questions and logical consistency. #AIinNursing #AIinEducation #NursingExams #ChatGPT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
didi发布了新的文献求助10
1秒前
俭朴听双完成签到,获得积分10
2秒前
xxx完成签到 ,获得积分10
2秒前
dong发布了新的文献求助10
3秒前
4秒前
子春末发布了新的文献求助10
6秒前
LiWeipeng完成签到,获得积分10
13秒前
泡芙发布了新的文献求助10
17秒前
哈哈哈哈完成签到 ,获得积分10
17秒前
浮游应助dong采纳,获得10
19秒前
不懂QM的薛定谔猫完成签到,获得积分10
22秒前
KBRS完成签到 ,获得积分10
23秒前
24秒前
28秒前
pliciyir发布了新的文献求助10
29秒前
halona完成签到,获得积分10
29秒前
30秒前
liaoxinghui完成签到,获得积分20
31秒前
刘Liam完成签到 ,获得积分10
34秒前
李健的小迷弟应助glay采纳,获得10
34秒前
hy发布了新的文献求助10
35秒前
liaoxinghui发布了新的文献求助10
35秒前
凉兮发布了新的文献求助30
36秒前
泡芙完成签到,获得积分10
38秒前
38秒前
222完成签到,获得积分10
39秒前
39秒前
hh完成签到,获得积分10
41秒前
却之不恭6253完成签到,获得积分10
42秒前
凉兮完成签到,获得积分10
43秒前
222发布了新的文献求助10
44秒前
palace完成签到,获得积分10
45秒前
47秒前
48秒前
50秒前
脑洞疼应助科研通管家采纳,获得10
50秒前
浮游应助科研通管家采纳,获得10
50秒前
乐乐应助科研通管家采纳,获得10
50秒前
xccpp应助科研通管家采纳,获得10
50秒前
科研通AI6应助科研通管家采纳,获得30
50秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560419
求助须知:如何正确求助?哪些是违规求助? 4645588
关于积分的说明 14675693
捐赠科研通 4586757
什么是DOI,文献DOI怎么找? 2516534
邀请新用户注册赠送积分活动 1490145
关于科研通互助平台的介绍 1460969