Assessing question characteristic influences on ChatGPT's performance and response-explanation consistency: Insights from Taiwan's Nursing Licensing Exam

一致性(知识库) 考试(生物学) 心理学 逻辑回归 护士教育 优势比 等级制度 护理部 可能性 医学 医学教育 计算机科学 病理 人工智能 古生物学 经济 内科学 市场经济 生物
作者
Mei-Chin Su,Li-En Lin,Lihwa Lin,Yu‐Chun Chen
出处
期刊:International Journal of Nursing Studies [Elsevier BV]
卷期号:153: 104717-104717 被引量:15
标识
DOI:10.1016/j.ijnurstu.2024.104717
摘要

Investigates the integration of artificial intelligence tool, specifically ChatGPT, in nursing education, addressing its effectiveness in exam preparation and self-assessment. This study aims to evaluate the performance of ChatGPT, one of the most promising artificial intelligence-driven linguistic understanding tools in answering question banks for nursing licensing examination preparation. It further analyzes question characteristics that might impact the accuracy of ChatGPT-generated answers and examines its reliability through human expert reviews. Cross-sectional survey comparing ChatGPT-generated answers and their explanations. 400 questions from Taiwan's 2022 Nursing Licensing Exam. The study analyzed 400 questions from five distinct subjects of Taiwan's 2022 Nursing Licensing Exam using the ChatGPT model which provided answers and in-depth explanations for each question. The impact of various question characteristics, such as type and cognitive level, on the accuracy of the ChatGPT-generated responses was assessed using logistic regression analysis. Additionally, human experts evaluated the explanations for each question, comparing them with the ChatGPT-generated answers to determine consistency. ChatGPT exhibited overall accuracy at 80.75 % for Taiwan's National Nursing Exam, which passes the exam. The accuracy of ChatGPT-generated answers diverged significantly across test subjects, demonstrating a hierarchy ranging from General Medicine at 88.75 %, Medical-Surgical Nursing at 80.0 %, Psychology and Community Nursing at 70.0 %, Obstetrics and Gynecology Nursing at 67.5 %, down to Basic Nursing at 63.0 %. ChatGPT had a higher probability of eliciting incorrect responses for questions with certain characteristics, notably those with clinical vignettes [Odds ratio 2.19, 95 % confidence interval 1.24–3.87, P = 0.007] and complex multiple-choice questions [Odds ratio 2.37, 95 % confidence interval 1.00–5.60, P = 0.049]. Furthermore, 14.25 % of ChatGPT-generated answers were inconsistent with their explanations, leading to a reduction in the overall accuracy to 74 %. This study reveals the ChatGPT's capabilities and limitations in nursing exam preparation, underscoring its potential as an auxiliary educational tool. It highlights the model's varied performance across different question types and notable inconsistencies between its answers and explanations. The study contributes significantly to the understanding of artificial intelligence in learning environments, guiding the future development of more effective and reliable artificial intelligence-based educational technologies. New study reveals ChatGPT's potential and challenges in nursing education: Achieves 80.75 % accuracy in exam prep but faces hurdles with complex questions and logical consistency. #AIinNursing #AIinEducation #NursingExams #ChatGPT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
十元完成签到,获得积分10
刚刚
刚刚
大太阳发布了新的文献求助10
1秒前
zrx发布了新的文献求助30
1秒前
3秒前
谢耳朵讲中文完成签到,获得积分10
4秒前
洋山芋完成签到,获得积分10
4秒前
Gauss应助jiaxzh采纳,获得10
4秒前
香蕉觅云应助乐正广山采纳,获得10
4秒前
i羽翼深蓝i完成签到,获得积分10
5秒前
英俊的铭应助方班术采纳,获得10
6秒前
甜甜芾完成签到,获得积分10
7秒前
酷波er应助满眼星辰采纳,获得10
8秒前
Jonathan驳回了Ava应助
9秒前
9秒前
大太阳完成签到,获得积分10
10秒前
11秒前
涨秋池完成签到,获得积分10
12秒前
13秒前
YC完成签到 ,获得积分10
13秒前
14秒前
15秒前
yznfly应助SweetyANN采纳,获得30
15秒前
曾珍发布了新的文献求助10
16秒前
无花果应助糖异生采纳,获得10
17秒前
燕子发布了新的文献求助10
17秒前
幽默的乐双完成签到,获得积分10
17秒前
湫湫湫发布了新的文献求助10
17秒前
老八完成签到,获得积分10
17秒前
雪山飞龙发布了新的文献求助10
17秒前
bububusbu发布了新的文献求助10
18秒前
19秒前
高宇晔发布了新的文献求助30
20秒前
21秒前
郭团团发布了新的文献求助10
21秒前
22秒前
23秒前
obito完成签到,获得积分20
23秒前
Owen应助yu采纳,获得10
24秒前
正直千兰完成签到,获得积分10
24秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966448
求助须知:如何正确求助?哪些是违规求助? 3511917
关于积分的说明 11160753
捐赠科研通 3246652
什么是DOI,文献DOI怎么找? 1793478
邀请新用户注册赠送积分活动 874465
科研通“疑难数据库(出版商)”最低求助积分说明 804403