Assessing question characteristic influences on ChatGPT's performance and response-explanation consistency: Insights from Taiwan's nursing licensing exam

一致性(知识库) 考试(生物学) 心理学 逻辑回归 护士教育 优势比 等级制度 护理部 可能性 医学 医学教育 计算机科学 病理 内科学 古生物学 生物 人工智能 经济 市场经济
作者
Mei-Chin Su,Li-En Lin,Lihwa Lin,Yu‐Chun Chen
出处
期刊:International Journal of Nursing Studies [Elsevier]
卷期号:: 104717-104717 被引量:9
标识
DOI:10.1016/j.ijnurstu.2024.104717
摘要

Investigates the integration of artificial intelligence tool, specifically ChatGPT, in nursing education, addressing its effectiveness in exam preparation and self-assessment. This study aims to evaluate the performance of ChatGPT, one of the most promising artificial intelligence-driven linguistic understanding tools in answering question banks for nursing licensing examination preparation. It further analyzes question characteristics that might impact the accuracy of ChatGPT-generated answers and examines its reliability through human expert reviews. Cross-sectional survey comparing ChatGPT-generated answers and their explanations. 400 questions from Taiwan's 2022 Nursing Licensing Exam. The study analyzed 400 questions from five distinct subjects of Taiwan's 2022 Nursing Licensing Exam using the ChatGPT model which provided answers and in-depth explanations for each question. The impact of various question characteristics, such as type and cognitive level, on the accuracy of the ChatGPT-generated responses was assessed using logistic regression analysis. Additionally, human experts evaluated the explanations for each question, comparing them with the ChatGPT-generated answers to determine consistency. ChatGPT exhibited overall accuracy at 80.75 % for Taiwan's National Nursing Exam, which passes the exam. The accuracy of ChatGPT-generated answers diverged significantly across test subjects, demonstrating a hierarchy ranging from General Medicine at 88.75 %, Medical-Surgical Nursing at 80.0 %, Psychology and Community Nursing at 70.0 %, Obstetrics and Gynecology Nursing at 67.5 %, down to Basic Nursing at 63.0 %. ChatGPT had a higher probability of eliciting incorrect responses for questions with certain characteristics, notably those with clinical vignettes [Odds ratio 2.19, 95 % confidence interval 1.24–3.87, P = 0.007] and complex multiple-choice questions [Odds ratio 2.37, 95 % confidence interval 1.00–5.60, P = 0.049]. Furthermore, 14.25 % of ChatGPT-generated answers were inconsistent with their explanations, leading to a reduction in the overall accuracy to 74 %. This study reveals the ChatGPT's capabilities and limitations in nursing exam preparation, underscoring its potential as an auxiliary educational tool. It highlights the model's varied performance across different question types and notable inconsistencies between its answers and explanations. The study contributes significantly to the understanding of artificial intelligence in learning environments, guiding the future development of more effective and reliable artificial intelligence-based educational technologies. New study reveals ChatGPT's potential and challenges in nursing education: Achieves 80.75 % accuracy in exam prep but faces hurdles with complex questions and logical consistency. #AIinNursing #AIinEducation #NursingExams #ChatGPT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hello应助照烧鸡腿采纳,获得10
刚刚
SciGPT应助临水思长采纳,获得10
刚刚
1秒前
1秒前
雪儿完成签到,获得积分10
1秒前
2秒前
有只小狗完成签到,获得积分10
2秒前
共享精神应助子暮采纳,获得10
2秒前
3秒前
ice.sweet完成签到,获得积分10
4秒前
彭于晏应助yy家的小哥哥采纳,获得10
4秒前
4秒前
5秒前
丘比特应助橙子采纳,获得10
5秒前
马路完成签到 ,获得积分10
5秒前
bkagyin应助彩色的芷容采纳,获得10
5秒前
6秒前
清脆代桃发布了新的文献求助10
7秒前
小马甲应助gk采纳,获得10
7秒前
7秒前
8秒前
合适成风完成签到,获得积分10
8秒前
小鸡炖蘑菇完成签到 ,获得积分10
9秒前
9秒前
Orange应助Dreamalive12138采纳,获得10
10秒前
10秒前
lijingwen发布了新的文献求助10
11秒前
善学以致用应助zhao采纳,获得10
11秒前
科研小废物完成签到,获得积分10
11秒前
12秒前
充电宝应助纯洁之心采纳,获得10
12秒前
12秒前
酷波er应助我爱学习采纳,获得10
13秒前
YDM完成签到,获得积分10
13秒前
13秒前
14秒前
15秒前
冷静灵竹完成签到,获得积分10
15秒前
16秒前
浅笑暖暖发布了新的文献求助10
16秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3160303
求助须知:如何正确求助?哪些是违规求助? 2811427
关于积分的说明 7892391
捐赠科研通 2470463
什么是DOI,文献DOI怎么找? 1315585
科研通“疑难数据库(出版商)”最低求助积分说明 630884
版权声明 602038