Dramatically Enhanced Light‐Emitting/Detecting Bifunction of CH3NH3PbBr3 Single‐Crystal Thin‐Film via Electrical Doping‐Induced Defects Passivation

材料科学 钝化 兴奋剂 载流子寿命 光致发光 响应度 电子迁移率 钙钛矿(结构) 光电子学 比探测率 载流子 光电探测器 结晶学 纳米技术 图层(电子) 化学
作者
Jun Xing,Yue Sun,Xiaorui Huang,Shengrong He,Ziyuan Huang,Ying Li,Wei Li,Weili Yu
出处
期刊:Advanced Optical Materials [Wiley]
卷期号:12 (17) 被引量:2
标识
DOI:10.1002/adom.202303264
摘要

Abstract High‐performance light‐emitting/detecting bifunctional optoelectronic devices based on halide perovskites are hindered by the less efficient carrier transport and radiative recombination processes. The density of defects (i.e., surface and bulk defects) is the main factor affecting carrier transport, radiation recombination, and determining performance in perovskites. Therefore, techniques to effectively regulate defects are highly needed. Here, a convenient and effective strategy, electrical doping, is proposed to flexibly regulate defect density, resulting in dramatically enhanced light‐emitting (i.e., fluorescence and carrier lifetime) and light‐detecting performance (i.e., hole mobility, photo‐responsivity, and photo‐detectivity) simultaneously. An improved carrier transport model in CH 3 NH 3 PbBr 3 (MPB) single‐crystal thin‐film (SCTF) is proposed to elucidate the regulation mechanism of defects and carrier transport under electrical doping. These results show that the surface defect density can be effectively reduced by 47.49% under optimal electrical poling intensity (0.168 V µm −1 ), and photoluminescence intensity and carrier lifetime can be increased by 259% and 89.98%, respectively. Furthermore, planar MPB SCTF photodetector exhibits hole mobility increased by 14.97%, photo‐responsivity increased by 82.78%, and photo‐detectivity increased by 868% at 0.168 V µm −1 . Particularly, a record photo‐detectivity of 3.53 × 10 13 Jones is achieved under electrical doping. This study provides guidance for flexibly adjusting defect density and optimizing perovskite SCTFs light‐emitting/detecting bifunctional devices.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
pio发布了新的文献求助10
刚刚
renkemaomao完成签到,获得积分10
刚刚
gaoww完成签到,获得积分10
1秒前
哈牛柚子鹿完成签到,获得积分10
1秒前
章鱼小丸子完成签到,获得积分10
1秒前
那小子真帅完成签到,获得积分10
2秒前
2秒前
方hh完成签到,获得积分10
2秒前
SaSa完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
zhuling发布了新的文献求助10
2秒前
派大星发布了新的文献求助10
2秒前
深年完成签到,获得积分10
2秒前
huangbing123完成签到 ,获得积分10
2秒前
liuye0202完成签到,获得积分10
3秒前
稳重的冰薇完成签到,获得积分10
3秒前
4秒前
顺利的冰海完成签到,获得积分10
4秒前
干净冰露完成签到,获得积分20
4秒前
洪汉完成签到,获得积分10
5秒前
天天快乐应助AL采纳,获得10
5秒前
milly完成签到,获得积分10
5秒前
搞科研的静静完成签到,获得积分10
5秒前
文轩完成签到,获得积分10
5秒前
星辰大海应助无辜的薯片采纳,获得10
5秒前
小孙完成签到,获得积分20
5秒前
KL发布了新的文献求助10
5秒前
迷人宛完成签到,获得积分10
5秒前
ZCM完成签到,获得积分10
5秒前
AI imaging完成签到,获得积分10
6秒前
彭于晏应助九月鹰飞采纳,获得10
7秒前
大胆的弼完成签到,获得积分10
7秒前
123完成签到,获得积分10
7秒前
7秒前
7秒前
7秒前
daifei完成签到,获得积分10
7秒前
斯文败类应助yan采纳,获得10
7秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573758
求助须知:如何正确求助?哪些是违规求助? 4660031
关于积分的说明 14727408
捐赠科研通 4599888
什么是DOI,文献DOI怎么找? 2524520
邀请新用户注册赠送积分活动 1494877
关于科研通互助平台的介绍 1464977