Dramatically Enhanced Light‐Emitting/Detecting Bifunction of CH3NH3PbBr3 Single‐Crystal Thin‐Film via Electrical Doping‐Induced Defects Passivation

材料科学 钝化 兴奋剂 薄膜 单晶 光电子学 Crystal(编程语言) 结晶学 纳米技术 图层(电子) 化学 计算机科学 程序设计语言
作者
Jun Xing,Yue Sun,Xiaorui Huang,Shengrong He,Ziyuan Huang,Ying Li,Wei Li,Weili Yu
出处
期刊:Advanced Optical Materials [Wiley]
标识
DOI:10.1002/adom.202303264
摘要

Abstract High‐performance light‐emitting/detecting bifunctional optoelectronic devices based on halide perovskites are hindered by the less efficient carrier transport and radiative recombination processes. The density of defects (i.e., surface and bulk defects) is the main factor affecting carrier transport, radiation recombination, and determining performance in perovskites. Therefore, techniques to effectively regulate defects are highly needed. Here, a convenient and effective strategy, electrical doping, is proposed to flexibly regulate defect density, resulting in dramatically enhanced light‐emitting (i.e., fluorescence and carrier lifetime) and light‐detecting performance (i.e., hole mobility, photo‐responsivity, and photo‐detectivity) simultaneously. An improved carrier transport model in CH 3 NH 3 PbBr 3 (MPB) single‐crystal thin‐film (SCTF) is proposed to elucidate the regulation mechanism of defects and carrier transport under electrical doping. These results show that the surface defect density can be effectively reduced by 47.49% under optimal electrical poling intensity (0.168 V µm −1 ), and photoluminescence intensity and carrier lifetime can be increased by 259% and 89.98%, respectively. Furthermore, planar MPB SCTF photodetector exhibits hole mobility increased by 14.97%, photo‐responsivity increased by 82.78%, and photo‐detectivity increased by 868% at 0.168 V µm −1 . Particularly, a record photo‐detectivity of 3.53 × 10 13 Jones is achieved under electrical doping. This study provides guidance for flexibly adjusting defect density and optimizing perovskite SCTFs light‐emitting/detecting bifunctional devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
虚心猕猴桃完成签到,获得积分20
刚刚
少年完成签到,获得积分10
1秒前
突突完成签到,获得积分10
2秒前
Summer完成签到,获得积分10
3秒前
gaowei完成签到,获得积分10
3秒前
英姑应助饺子采纳,获得10
3秒前
4秒前
ww发布了新的文献求助10
4秒前
Ch185完成签到,获得积分10
5秒前
5秒前
DreamLover完成签到,获得积分10
6秒前
6秒前
幽默的凡完成签到 ,获得积分10
9秒前
Owen应助科研通管家采纳,获得10
10秒前
SciGPT应助科研通管家采纳,获得10
10秒前
CWNU_HAN应助科研通管家采纳,获得30
10秒前
bkagyin应助科研通管家采纳,获得10
10秒前
斯文败类应助科研通管家采纳,获得30
10秒前
Lucas应助科研通管家采纳,获得10
10秒前
happyyoyo应助科研通管家采纳,获得10
10秒前
隐形曼青应助科研通管家采纳,获得10
10秒前
领导范儿应助科研通管家采纳,获得10
10秒前
科目三应助科研通管家采纳,获得10
10秒前
李健应助科研通管家采纳,获得10
10秒前
共享精神应助科研通管家采纳,获得10
11秒前
一一发布了新的文献求助10
11秒前
Migue应助科研通管家采纳,获得10
11秒前
英姑应助科研通管家采纳,获得10
11秒前
情怀应助科研通管家采纳,获得10
11秒前
苏卿应助科研通管家采纳,获得10
11秒前
Hello应助科研通管家采纳,获得10
11秒前
Lucky应助科研通管家采纳,获得10
11秒前
852应助科研通管家采纳,获得10
11秒前
pluto应助科研通管家采纳,获得10
11秒前
11秒前
苏卿应助科研通管家采纳,获得10
11秒前
深情安青应助科研通管家采纳,获得10
11秒前
SciGPT应助科研通管家采纳,获得10
11秒前
大个应助科研通管家采纳,获得10
11秒前
bkagyin应助科研通管家采纳,获得10
11秒前
高分求助中
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Die Gottesanbeterin: Mantis religiosa: 656 400
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3165286
求助须知:如何正确求助?哪些是违规求助? 2816322
关于积分的说明 7912245
捐赠科研通 2475959
什么是DOI,文献DOI怎么找? 1318465
科研通“疑难数据库(出版商)”最低求助积分说明 632171
版权声明 602388