Segment anything model for medical images?

计算机科学 分割 人工智能 对象(语法) 图像分割 随机性 计算机视觉 模态(人机交互) 图像(数学) 模式识别(心理学) 数学 统计
作者
Yuhao Huang,Xin Yang,Lian Liu,Han Zhou,Chang Ao,Xinrui Zhou,Rusi Chen,Junxuan Yu,Jiongquan Chen,Chaoyu Chen,Sijing Liu,Haozhe Chi,Xindi Hu,Kejuan Yue,Lei Li,Vicente Grau,Deng-Ping Fan,Fajin Dong,Dong Ni
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:92: 103061-103061 被引量:80
标识
DOI:10.1016/j.media.2023.103061
摘要

The Segment Anything Model (SAM) is the first foundation model for general image segmentation. It has achieved impressive results on various natural image segmentation tasks. However, medical image segmentation (MIS) is more challenging because of the complex modalities, fine anatomical structures, uncertain and complex object boundaries, and wide-range object scales. To fully validate SAM's performance on medical data, we collected and sorted 53 open-source datasets and built a large medical segmentation dataset with 18 modalities, 84 objects, 125 object-modality paired targets, 1050K 2D images, and 6033K masks. We comprehensively analyzed different models and strategies on the so-called COSMOS 1050K dataset. Our findings mainly include the following: (1) SAM showed remarkable performance in some specific objects but was unstable, imperfect, or even totally failed in other situations. (2) SAM with the large ViT-H showed better overall performance than that with the small ViT-B. (3) SAM performed better with manual hints, especially box, than the Everything mode. (4) SAM could help human annotation with high labeling quality and less time. (5) SAM was sensitive to the randomness in the center point and tight box prompts, and may suffer from a serious performance drop. (6) SAM performed better than interactive methods with one or a few points, but will be outpaced as the number of points increases. (7) SAM's performance correlated to different factors, including boundary complexity, intensity differences, etc. (8) Finetuning the SAM on specific medical tasks could improve its average DICE performance by 4.39% and 6.68% for ViT-B and ViT-H, respectively. Codes and models are available at: https://github.com/yuhoo0302/Segment-Anything-Model-for-Medical-Images. We hope that this comprehensive report can help researchers explore the potential of SAM applications in MIS, and guide how to appropriately use and develop SAM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
FAY发布了新的文献求助10
2秒前
村口的帅老头完成签到 ,获得积分10
2秒前
希望天下0贩的0应助lion_wei采纳,获得10
3秒前
松绿格完成签到 ,获得积分10
4秒前
Betty完成签到,获得积分10
5秒前
竹竹发布了新的文献求助10
8秒前
9秒前
10秒前
呼呼发布了新的文献求助10
10秒前
10秒前
一只大憨憨猫完成签到,获得积分10
11秒前
12秒前
13秒前
ding应助FAY采纳,获得10
13秒前
15秒前
lion_wei发布了新的文献求助10
15秒前
爆米花应助交出小狗采纳,获得10
16秒前
18秒前
meini发布了新的文献求助10
18秒前
chiron完成签到,获得积分10
20秒前
竹竹完成签到,获得积分10
20秒前
爆米花应助鞘皮采纳,获得10
22秒前
yuan发布了新的文献求助10
23秒前
25秒前
Zyl完成签到 ,获得积分10
26秒前
27秒前
朴实海亦完成签到,获得积分10
27秒前
詹密完成签到,获得积分10
27秒前
葭月十七发布了新的文献求助10
28秒前
大气无极完成签到,获得积分10
28秒前
李爱国应助no_one采纳,获得10
29秒前
31秒前
32秒前
动听帆布鞋完成签到,获得积分10
32秒前
Moon完成签到 ,获得积分10
32秒前
Xujiamin发布了新的文献求助10
33秒前
云轩完成签到,获得积分10
35秒前
35秒前
35秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140041
求助须知:如何正确求助?哪些是违规求助? 2790931
关于积分的说明 7797066
捐赠科研通 2447278
什么是DOI,文献DOI怎么找? 1301808
科研通“疑难数据库(出版商)”最低求助积分说明 626340
版权声明 601194