Segment anything model for medical images?

计算机科学 分割 人工智能 对象(语法) 图像分割 随机性 计算机视觉 模态(人机交互) 图像(数学) 模式识别(心理学) 数学 统计
作者
Yuhao Huang,Xin Yang,Lian Liu,Han Zhou,Chang Ao,Xinrui Zhou,Rusi Chen,Junxuan Yu,Jiongquan Chen,Chaoyu Chen,Sijing Liu,Haozhe Chi,Xindi Hu,Kejuan Yue,Lei Li,Vicente Grau,Deng-Ping Fan,Fajin Dong,Dong Ni
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:92: 103061-103061 被引量:163
标识
DOI:10.1016/j.media.2023.103061
摘要

The Segment Anything Model (SAM) is the first foundation model for general image segmentation. It has achieved impressive results on various natural image segmentation tasks. However, medical image segmentation (MIS) is more challenging because of the complex modalities, fine anatomical structures, uncertain and complex object boundaries, and wide-range object scales. To fully validate SAM's performance on medical data, we collected and sorted 53 open-source datasets and built a large medical segmentation dataset with 18 modalities, 84 objects, 125 object-modality paired targets, 1050K 2D images, and 6033K masks. We comprehensively analyzed different models and strategies on the so-called COSMOS 1050K dataset. Our findings mainly include the following: (1) SAM showed remarkable performance in some specific objects but was unstable, imperfect, or even totally failed in other situations. (2) SAM with the large ViT-H showed better overall performance than that with the small ViT-B. (3) SAM performed better with manual hints, especially box, than the Everything mode. (4) SAM could help human annotation with high labeling quality and less time. (5) SAM was sensitive to the randomness in the center point and tight box prompts, and may suffer from a serious performance drop. (6) SAM performed better than interactive methods with one or a few points, but will be outpaced as the number of points increases. (7) SAM's performance correlated to different factors, including boundary complexity, intensity differences, etc. (8) Finetuning the SAM on specific medical tasks could improve its average DICE performance by 4.39% and 6.68% for ViT-B and ViT-H, respectively. Codes and models are available at: https://github.com/yuhoo0302/Segment-Anything-Model-for-Medical-Images. We hope that this comprehensive report can help researchers explore the potential of SAM applications in MIS, and guide how to appropriately use and develop SAM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tgd完成签到,获得积分10
刚刚
刚刚
xiuxiu_27发布了新的文献求助10
刚刚
科研通AI5应助zzznznnn采纳,获得10
刚刚
lidm完成签到,获得积分10
刚刚
小赟完成签到,获得积分10
1秒前
1秒前
yyf发布了新的文献求助10
1秒前
南佳完成签到,获得积分20
2秒前
2秒前
一一完成签到,获得积分10
2秒前
2秒前
3秒前
韭菜盒子发布了新的文献求助10
3秒前
3秒前
3秒前
Cochane发布了新的文献求助10
4秒前
monday完成签到,获得积分10
4秒前
sunnyhhh完成签到,获得积分10
4秒前
aaa完成签到,获得积分10
4秒前
4秒前
4秒前
勿庸发布了新的文献求助10
5秒前
犹豫的忆梅完成签到,获得积分10
5秒前
5秒前
周助完成签到,获得积分10
5秒前
jack1511完成签到,获得积分20
5秒前
敏感初露完成签到,获得积分10
6秒前
冯冯完成签到 ,获得积分10
6秒前
科研通AI5应助落寞的紫山采纳,获得10
6秒前
gaos发布了新的文献求助10
6秒前
嘻嘻完成签到,获得积分10
6秒前
脑洞疼应助哈哈采纳,获得10
6秒前
Yfvonne完成签到,获得积分10
7秒前
蕾蕾不爱科研完成签到,获得积分10
7秒前
苹果南烟完成签到,获得积分10
7秒前
7秒前
可靠的书本完成签到,获得积分10
7秒前
7秒前
thousandlong发布了新的文献求助10
8秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740