IA-LSTM: Interaction-Aware LSTM for Pedestrian Trajectory Prediction

弹道 行人 计算机科学 人工智能 机器学习 工程类 物理 运输工程 天文
作者
Jing Yang,Yuehai Chen,Shaoyi Du,Badong Chen,José C. Prı́ncipe
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:54 (7): 3904-3917 被引量:1
标识
DOI:10.1109/tcyb.2024.3359237
摘要

Predicting the trajectory of pedestrians in crowd scenarios is indispensable in self-driving or autonomous mobile robot field because estimating the future locations of pedestrians around is beneficial for policy decision to avoid collision. It is a challenging issue because humans have different walking motions, and the interactions between humans and objects in the current environment, especially between humans themselves, are complex. Previous researchers focused on how to model human-human interactions but neglected the relative importance of interactions. To address this issue, a novel mechanism based on correntropy is introduced. The proposed mechanism not only can measure the relative importance of human-human interactions but also can build personal space for each pedestrian. An interaction module, including this data-driven mechanism, is further proposed. In the proposed module, the data-driven mechanism can effectively extract the feature representations of dynamic human-human interactions in the scene and calculate the corresponding weights to represent the importance of different interactions. To share such social messages among pedestrians, an interaction-aware architecture based on long short-term memory network for trajectory prediction is designed. Experiments are conducted on two public datasets. Experimental results demonstrate that our model can achieve better performance than several latest methods with good performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大模型应助ylq采纳,获得10
1秒前
Besty完成签到,获得积分10
1秒前
善学以致用应助yuaasusanaann采纳,获得10
2秒前
2秒前
zzl1111完成签到,获得积分10
2秒前
youyuer完成签到,获得积分10
2秒前
3秒前
Kate发布了新的文献求助10
4秒前
wanwan应助心如采纳,获得10
6秒前
6秒前
JJ完成签到,获得积分10
7秒前
youyuer发布了新的文献求助10
7秒前
酱酱发布了新的文献求助10
8秒前
所所应助xiao5424liu采纳,获得10
8秒前
8秒前
思源应助帅哥吴克采纳,获得10
9秒前
bkagyin应助dpp采纳,获得10
9秒前
aobacae完成签到,获得积分10
9秒前
9秒前
2113完成签到,获得积分10
10秒前
liu完成签到 ,获得积分10
11秒前
11秒前
震动的曲奇完成签到,获得积分10
12秒前
简单的战斗机完成签到,获得积分10
13秒前
ylq发布了新的文献求助10
14秒前
Shawnchan发布了新的文献求助10
14秒前
15秒前
15秒前
16秒前
和谐的寄凡完成签到,获得积分10
17秒前
18秒前
18秒前
帅哥吴克发布了新的文献求助10
20秒前
21秒前
天才完成签到,获得积分10
22秒前
科目三应助稻草人采纳,获得10
22秒前
123321发布了新的文献求助10
22秒前
23秒前
ziyu发布了新的文献求助10
23秒前
23秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992317
求助须知:如何正确求助?哪些是违规求助? 3533285
关于积分的说明 11261852
捐赠科研通 3272704
什么是DOI,文献DOI怎么找? 1805867
邀请新用户注册赠送积分活动 882732
科研通“疑难数据库(出版商)”最低求助积分说明 809459