IA-LSTM: Interaction-Aware LSTM for Pedestrian Trajectory Prediction

弹道 行人 计算机科学 人工智能 机器学习 工程类 物理 运输工程 天文
作者
Jing Yang,Yuehai Chen,Shaoyi Du,Badong Chen,José C. Prı́ncipe
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:54 (7): 3904-3917 被引量:1
标识
DOI:10.1109/tcyb.2024.3359237
摘要

Predicting the trajectory of pedestrians in crowd scenarios is indispensable in self-driving or autonomous mobile robot field because estimating the future locations of pedestrians around is beneficial for policy decision to avoid collision. It is a challenging issue because humans have different walking motions, and the interactions between humans and objects in the current environment, especially between humans themselves, are complex. Previous researchers focused on how to model human-human interactions but neglected the relative importance of interactions. To address this issue, a novel mechanism based on correntropy is introduced. The proposed mechanism not only can measure the relative importance of human-human interactions but also can build personal space for each pedestrian. An interaction module, including this data-driven mechanism, is further proposed. In the proposed module, the data-driven mechanism can effectively extract the feature representations of dynamic human-human interactions in the scene and calculate the corresponding weights to represent the importance of different interactions. To share such social messages among pedestrians, an interaction-aware architecture based on long short-term memory network for trajectory prediction is designed. Experiments are conducted on two public datasets. Experimental results demonstrate that our model can achieve better performance than several latest methods with good performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
顺心山兰发布了新的文献求助10
2秒前
倪倪驳回了iNk应助
4秒前
刘鑫宇发布了新的文献求助10
5秒前
fan发布了新的文献求助10
6秒前
要减肥期待完成签到,获得积分10
7秒前
7秒前
DDDDDD发布了新的文献求助10
10秒前
Jasper应助科研通管家采纳,获得10
11秒前
11秒前
汉堡包应助科研通管家采纳,获得10
12秒前
12秒前
12秒前
深情安青应助科研通管家采纳,获得10
12秒前
研友_VZG7GZ应助科研通管家采纳,获得10
12秒前
CodeCraft应助科研通管家采纳,获得10
12秒前
orixero应助科研通管家采纳,获得10
12秒前
脑洞疼应助科研通管家采纳,获得10
12秒前
星辰大海应助syj采纳,获得10
12秒前
12秒前
12秒前
12秒前
12秒前
13秒前
刘鑫宇完成签到,获得积分20
13秒前
DDDDDD完成签到,获得积分10
16秒前
ruru发布了新的文献求助10
16秒前
16秒前
yy完成签到,获得积分10
17秒前
betterme发布了新的文献求助10
17秒前
17秒前
叮ding完成签到,获得积分10
18秒前
远志发布了新的文献求助10
18秒前
wenjie发布了新的文献求助30
18秒前
随便起个昵称吧完成签到 ,获得积分10
18秒前
19秒前
科研通AI2S应助小米粥采纳,获得10
20秒前
21秒前
21秒前
高分求助中
中央政治學校研究部新政治月刊社出版之《新政治》(第二卷第四期) 1000
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Mantids of the euro-mediterranean area 600
【港理工学位论文】Telling the tale of health crisis response on social media : an exploration of narrative plot and commenters' co-narration 500
Mantodea of the World: Species Catalog Andrew M 500
Insecta 2. Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3434089
求助须知:如何正确求助?哪些是违规求助? 3031323
关于积分的说明 8941651
捐赠科研通 2719262
什么是DOI,文献DOI怎么找? 1491703
科研通“疑难数据库(出版商)”最低求助积分说明 689427
邀请新用户注册赠送积分活动 685580