伤口愈合
成纤维细胞
琼脂糖凝胶电泳
龙葵
细胞迁移
角质形成细胞
琼脂糖
活力测定
化学
细胞
分子生物学
细胞生物学
生物
生物化学
植物
免疫学
体外
基因
作者
Valeria Daniello,Vincenzo De Leo,Maria Lasalvia,Md Niamat Hossain,Annalucia Carbone,Lucia Catucci,Roberto Zefferino,Chiara Ingrosso,Massimo Conese,Sante Di Gioia
摘要
Plant-derived nanovesicles have been considered interesting in medicine for their breakthrough biological effects, including those relevant to wound healing. However, tomato-derived nanovesicles (TDNVs) have not been studied for their effects on wound closure yet. TDNVs were isolated from Solanum lycopersicum (var. Piccadilly) ripe tomatoes by ultracentrifugation. Extract (collected during the isolation procedure) and NVs (pellet) were characterized by transmission electron microscopy and laser Doppler electrophoresis. Wound healing in the presence of Extract or NVs was analyzed by a scratch assay with monocultures of human keratinocytes (HUKE) or NIH-3T3 mouse fibroblasts. Cell proliferation and migration were studied by MTT and agarose spot assay, respectively. The vesicles in the Extract and NV samples were nanosized with a similar mean diameter of 115 nm and 130 nm, respectively. Both Extract and NVs had already accelerated wound closure of injured HUKE and NIH-3T3 monocultures by 6 h post-injury. Although neither sample exerted a cytotoxic effect on HUKE and NIH-3T3 fibroblasts, they did not augment cell proliferation. NVs and the Extract increased cell migration of both cell types. NVs from tomatoes may accelerate wound healing by increasing keratinocyte and fibroblast migration. These results indicate the potential therapeutic usefulness of TDNVs in the treatment of chronic or hard-to-heal ulcers.
科研通智能强力驱动
Strongly Powered by AbleSci AI