化学
氢甲酰化
烯烃
丙烯
对称性破坏
吸附
多相催化
化学物理
光化学
物理化学
催化作用
有机化学
铑
物理
量子力学
作者
Shunan Zhang,Junjun Chen,Baiyin Wei,Haozhi Zhou,Kaimin Hua,Xiaofang Liu,Hui Wang,Yuhan Sun
摘要
Alkene hydroformylation is one of the largest industrial reactions on an industrial scale; however, the development of nonnoble heterogeneous catalysts is usually limited by their low activities and stabilities. Herein, we constructed a 1% Co2C/SiO2 catalyst featuring Co–Cvacancy–Co–C symmetry-breaking sites, which generated a polar surface exhibiting a moderate charge density gradient at the localized Co atoms. Comparatively, this catalyst exhibited notable enhancements in the adsorption and activation of the reactants, as well as in the polarity between intermediates. Significantly, the spatial distance between the adsorption sites of intermediates was reduced, thereby effectively decreasing the energy barrier of reaction processes. As the density of the symmetry-breaking sites increased, the turnover number for propene hydroformylation soared to 18 363, exceeding the activity of heterogeneous Co-based catalysts reported thus far by 1 or 2 orders of magnitude, and the catalyst exhibited high stability during the reaction. This study provides a methodology for constructing atomically active sites, which holds great potential for the design and development of highly efficient catalysts.
科研通智能强力驱动
Strongly Powered by AbleSci AI