PREDICTION OF PARAMETERS OF BOILER SUPERHEATER BASED ON TRANSFER LEARNING METHOD

过热器 锅炉(水暖) 计算机科学 核工程 热力学 物理 工程类
作者
Shuiguang Tong,Yang Qi,Zheming Tong,Haidan Wang,Xin Chen
出处
期刊:Heat transfer research [Begell House Inc.]
卷期号:55 (12): 39-54 被引量:1
标识
DOI:10.1615/heattransres.2024049142
摘要

The superheater in the boiler is the key of equipment connecting high-temperature steam to the turbine for power generation. At present, the problems of large variable fluctuations, strong timing coupling, and multi-power plant data utilization prevent the temperature, flow, and pressure prediction of the boiler superheater. In this paper, a method for predicting the parameters of boiler superheater based on a transfer learning model is proposed, which realizes the joint utilization of data from multiple power plants. The method first collects data from a waste incineration boiler power plant for pre-training the long short-term memory (LSTM)-transformer model, and then completes the transfer learning training on the new power plant. The proposed method has the advantages of high prediction accuracy, good robustness, and more reliable location prediction with drastic changes. The predictions on the test set are within ± 5% of the experimental value. Compared with the model not trained by the transfer learning, the proposed method achieves the lowest relative errors for all prediction intervals in the 3-15 min range. Compared to the linear regression (LR), support vector regression (SVR), and random forest (RF), the proposed method improves the average absolute percentage error (MAPE) by 30%, 13%, and 20%, respectively. Flatter loss sharpness value and better robust performance obtained from the transfer learning method is verified by an experimental verification. Finally, a digital system design for power plants with real-time data visualization monitoring, parameter prediction, and fault warning functions are implemented.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
孔雀翎发布了新的文献求助10
2秒前
向着阳光奔跑完成签到,获得积分20
3秒前
3秒前
从容的无极应助蓝荆采纳,获得10
4秒前
负责凛完成签到,获得积分10
4秒前
空谷新苗发布了新的文献求助10
5秒前
5秒前
叶长亭发布了新的文献求助20
5秒前
火星上访旋完成签到,获得积分10
5秒前
SciGPT应助淡定靖儿采纳,获得10
6秒前
北方集群完成签到,获得积分10
6秒前
FashionBoy应助仚屳采纳,获得10
7秒前
思源应助含蓄清炎采纳,获得10
8秒前
liziqqq完成签到,获得积分10
8秒前
9秒前
烟花应助现代秦始皇采纳,获得10
10秒前
boltos发布了新的文献求助10
12秒前
晨晨学长发布了新的文献求助10
12秒前
无花果应助如意翡翠采纳,获得10
13秒前
13秒前
pp1230发布了新的文献求助10
13秒前
芒果椰奶冻完成签到,获得积分10
14秒前
14秒前
大昕完成签到,获得积分10
14秒前
14秒前
16秒前
蝉一个夏天完成签到,获得积分10
16秒前
gao完成签到 ,获得积分20
17秒前
田様应助VDC采纳,获得10
17秒前
17秒前
大昕发布了新的文献求助10
18秒前
18秒前
61489486发布了新的文献求助10
18秒前
19秒前
科研小白完成签到,获得积分10
20秒前
归尘发布了新的文献求助10
21秒前
知来者发布了新的文献求助10
21秒前
如意翡翠发布了新的文献求助10
22秒前
22秒前
结实涑发布了新的文献求助10
23秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3542916
求助须知:如何正确求助?哪些是违规求助? 3120308
关于积分的说明 9342102
捐赠科研通 2818290
什么是DOI,文献DOI怎么找? 1549524
邀请新用户注册赠送积分活动 722160
科研通“疑难数据库(出版商)”最低求助积分说明 712978