FATFusion: A functional–anatomical transformer for medical image fusion

计算机科学 融合 变压器 人工智能 图像融合 计算机视觉 图像(数学) 自然语言处理 情报检索 工程类 语言学 电气工程 哲学 电压
作者
Wei Tang,Fazhi He
出处
期刊:Information Processing and Management [Elsevier]
卷期号:61 (4): 103687-103687 被引量:5
标识
DOI:10.1016/j.ipm.2024.103687
摘要

Medical image fusion (MIF) strives to obtain an informative fused image by integrating complementary information, e.g., functional metabolic properties and anatomical soft tissues, to facilitate disease diagnosis and treatment planning. To solve the problems of existing MIF algorithms, including inconvenient and manually designed transformation methods, complicated fusion strategies, global complementary information loss, and insufficient consideration of the modality-specific intrinsic characteristics, in this paper, we innovatively propose a Functional–Anatomical Transformer for MIF named FATFusion. In the proposed method, a functional multiscale branch (FMB) and an anatomical multiscale branch (AMB) are designed to extract interscale characteristics belonging to each modality. In addition, functional-guided transformer modules (FGTMs) and anatomical-guided transformer modules (AGTMs) are elaborated to communicate and gather the perceived features for further global complementary information interaction and aggregation. Moreover, the pixel loss and total variation loss are designed to train FATFusion in an end-to-end and unsupervised manner, guiding the deep fusion model to leverage more significant properties. Promising quantitative and qualitative assessments illustrate that FATFusion surpasses alternative state-of-the-art MIF methodologies, excelling in both objective evaluation and perceptible observation. Furthermore, successful generalization results reveal that FATFusion has impressive generalization ability. The source code of the proposed method is available at https://github.com/tthinking/FATFusion.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
GDL发布了新的文献求助10
刚刚
Ammy发布了新的文献求助10
1秒前
李健应助upupup采纳,获得10
2秒前
8秒前
itsserene应助科研通管家采纳,获得20
8秒前
搜集达人应助科研通管家采纳,获得10
8秒前
NexusExplorer应助科研通管家采纳,获得10
8秒前
不配.应助科研通管家采纳,获得20
8秒前
9秒前
9秒前
懦弱的乐蕊完成签到 ,获得积分10
9秒前
9秒前
小梦发布了新的文献求助10
11秒前
李加一完成签到,获得积分10
12秒前
mm发布了新的文献求助10
13秒前
14秒前
取什么好呢应助LIN采纳,获得10
15秒前
安详靖柏完成签到,获得积分10
16秒前
18秒前
ihc发布了新的文献求助10
19秒前
乐乐应助N7采纳,获得10
20秒前
不配.应助wonhui采纳,获得10
21秒前
张楠发布了新的文献求助20
21秒前
24秒前
28秒前
Huajing_Yang发布了新的文献求助10
31秒前
11发布了新的文献求助10
31秒前
葡萄成熟应助王算法采纳,获得10
32秒前
32秒前
33秒前
34秒前
lucas发布了新的文献求助10
36秒前
深情安青应助ihc采纳,获得10
37秒前
张楠完成签到,获得积分10
37秒前
39秒前
zhu发布了新的文献求助10
39秒前
冷艳紫南完成签到,获得积分10
41秒前
完美世界应助mm采纳,获得10
42秒前
万能图书馆应助ddddd采纳,获得10
43秒前
所所应助lucas采纳,获得10
45秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3138630
求助须知:如何正确求助?哪些是违规求助? 2789630
关于积分的说明 7791721
捐赠科研通 2445972
什么是DOI,文献DOI怎么找? 1300801
科研通“疑难数据库(出版商)”最低求助积分说明 626058
版权声明 601079