FATFusion: A functional–anatomical transformer for medical image fusion

计算机科学 融合 变压器 人工智能 图像融合 计算机视觉 图像(数学) 自然语言处理 情报检索 工程类 语言学 电气工程 哲学 电压
作者
Wei Tang,Fazhi He
出处
期刊:Information Processing and Management [Elsevier]
卷期号:61 (4): 103687-103687 被引量:29
标识
DOI:10.1016/j.ipm.2024.103687
摘要

Medical image fusion (MIF) strives to obtain an informative fused image by integrating complementary information, e.g., functional metabolic properties and anatomical soft tissues, to facilitate disease diagnosis and treatment planning. To solve the problems of existing MIF algorithms, including inconvenient and manually designed transformation methods, complicated fusion strategies, global complementary information loss, and insufficient consideration of the modality-specific intrinsic characteristics, in this paper, we innovatively propose a Functional–Anatomical Transformer for MIF named FATFusion. In the proposed method, a functional multiscale branch (FMB) and an anatomical multiscale branch (AMB) are designed to extract interscale characteristics belonging to each modality. In addition, functional-guided transformer modules (FGTMs) and anatomical-guided transformer modules (AGTMs) are elaborated to communicate and gather the perceived features for further global complementary information interaction and aggregation. Moreover, the pixel loss and total variation loss are designed to train FATFusion in an end-to-end and unsupervised manner, guiding the deep fusion model to leverage more significant properties. Promising quantitative and qualitative assessments illustrate that FATFusion surpasses alternative state-of-the-art MIF methodologies, excelling in both objective evaluation and perceptible observation. Furthermore, successful generalization results reveal that FATFusion has impressive generalization ability. The source code of the proposed method is available at https://github.com/tthinking/FATFusion.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
wuludie应助徐老师采纳,获得30
1秒前
七田皿发布了新的文献求助10
1秒前
刘岩松发布了新的文献求助10
2秒前
2秒前
2233发布了新的文献求助10
2秒前
3秒前
月圆夜完成签到,获得积分10
3秒前
3秒前
CD56完成签到,获得积分10
3秒前
3秒前
顾矜应助科研人采纳,获得10
3秒前
3秒前
顺心夜南发布了新的文献求助20
4秒前
田様应助LSX采纳,获得10
4秒前
好好发布了新的文献求助10
4秒前
LuoJiajun发布了新的文献求助10
5秒前
汤柏钧发布了新的文献求助10
5秒前
思源应助高高飞风采纳,获得30
5秒前
5秒前
min完成签到 ,获得积分10
6秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
MBL发布了新的文献求助10
6秒前
苜蓿发布了新的文献求助10
6秒前
要减肥笑阳完成签到 ,获得积分10
7秒前
7秒前
聪明小黄发布了新的文献求助10
7秒前
8秒前
铃兰发布了新的文献求助10
8秒前
mamaise完成签到,获得积分10
9秒前
石头发布了新的文献求助10
9秒前
9秒前
抱抱是只可爱小猫完成签到,获得积分10
9秒前
暴龙战士发布了新的文献求助10
10秒前
10秒前
asdfzxcv应助NotToday采纳,获得10
10秒前
积极慕晴完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646180
求助须知:如何正确求助?哪些是违规求助? 4770425
关于积分的说明 15033724
捐赠科研通 4804901
什么是DOI,文献DOI怎么找? 2569318
邀请新用户注册赠送积分活动 1526307
关于科研通互助平台的介绍 1485803