UAVs for forestry: Metric-semantic mapping and diameter estimation with autonomous aerial robots

机器人 计算机科学 人工智能 计算机视觉 激光雷达 公制(单位) 比例(比率) 地形 惯性测量装置 集合(抽象数据类型) 全球地图 树(集合论) 遥感 数学 地理 工程类 地图学 运营管理 程序设计语言 数学分析
作者
Ankit Prabhu,Xu Liu,Igor Spasojevic,Yuwei Wu,Yifei Shao,Dexter Ong,Jiuzhou Lei,Patrick Corey Green,Pratik Chaudhari,Vijay Kumar
出处
期刊:Mechanical Systems and Signal Processing [Elsevier BV]
卷期号:208: 111050-111050 被引量:6
标识
DOI:10.1016/j.ymssp.2023.111050
摘要

To properly monitor the growth of forests and administer effective methods for their cultivation, forestry researchers require access to quantitative metrics such as diameter at breast height and stem taper profile of trees. These metrics are tedious and labor-intensive to measure by hand, especially at the scale of vast forests with thick undergrowth. Autonomous mobile robots can help to scale up such operations and provide an efficient method to capture the data. We present a set of algorithms for autonomous navigation and fine-grained metric-semantic mapping with a team of aerial robots in under-canopy forest environments. Our autonomous UAV system has 3D flight capabilities and relies only on a LIDAR and an IMU for state estimation and mapping. This allows each robot to accurately navigate in challenging forest environments with drastic terrain changes regardless of illumination conditions. Our deep-learning-driven fine-grained metric-semantic mapping module is capable of detecting and extracting detailed information such as the position, orientation, and stem taper profile of trees. This map of tree trunks is represented as a set of sparse cylinder models. Our semantic place recognition module leverages this sparse representation to efficiently estimate the relative transformation between multiple robots, and merge their information to build a globally consistent large-scale map. This ultimately allows us to scale up operations with multiple robots. Our system is able to achieve a mean absolute error of 1.45 cm for diameter estimation and 13.2 cm for relative position estimation between a pair of robots after place recognition and map merging
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
caixiayin发布了新的文献求助10
刚刚
刚刚
飞快的奇异果完成签到,获得积分10
1秒前
1秒前
1秒前
顾矜应助maiyatang采纳,获得10
1秒前
LLL发布了新的文献求助10
1秒前
1秒前
3秒前
3秒前
易安发布了新的文献求助30
3秒前
ELend完成签到,获得积分10
4秒前
4秒前
Sun发布了新的文献求助10
4秒前
laowang完成签到,获得积分10
4秒前
fujun完成签到,获得积分10
5秒前
5秒前
zyx发布了新的文献求助10
5秒前
夜半发布了新的文献求助10
5秒前
5秒前
NexusExplorer应助DJ采纳,获得10
5秒前
莫燕梦完成签到,获得积分10
6秒前
7秒前
7秒前
YY完成签到 ,获得积分10
8秒前
Hepatology发布了新的文献求助10
8秒前
绿色的yu完成签到 ,获得积分10
8秒前
8秒前
fgjkl完成签到 ,获得积分10
9秒前
9秒前
10秒前
zyw完成签到,获得积分10
10秒前
10秒前
香蕉觅云应助岗岗采纳,获得10
10秒前
害羞安荷发布了新的文献求助30
10秒前
小飞侠完成签到,获得积分10
10秒前
海风发布了新的文献求助20
11秒前
12秒前
cool发布了新的文献求助10
13秒前
所所应助搞怪半烟采纳,获得10
13秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987223
求助须知:如何正确求助?哪些是违规求助? 3529513
关于积分的说明 11245651
捐赠科研通 3268108
什么是DOI,文献DOI怎么找? 1804027
邀请新用户注册赠送积分活动 881303
科研通“疑难数据库(出版商)”最低求助积分说明 808650