UAVs for forestry: Metric-semantic mapping and diameter estimation with autonomous aerial robots

机器人 计算机科学 人工智能 计算机视觉 激光雷达 公制(单位) 比例(比率) 地形 惯性测量装置 集合(抽象数据类型) 全球地图 树(集合论) 遥感 数学 地理 工程类 地图学 运营管理 程序设计语言 数学分析
作者
Ankit Prabhu,Xu Liu,Igor Spasojevic,Yuwei Wu,Yifei Shao,Dexter Ong,Jiuzhou Lei,Patrick Corey Green,Pratik Chaudhari,Vijay Kumar
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:208: 111050-111050 被引量:9
标识
DOI:10.1016/j.ymssp.2023.111050
摘要

To properly monitor the growth of forests and administer effective methods for their cultivation, forestry researchers require access to quantitative metrics such as diameter at breast height and stem taper profile of trees. These metrics are tedious and labor-intensive to measure by hand, especially at the scale of vast forests with thick undergrowth. Autonomous mobile robots can help to scale up such operations and provide an efficient method to capture the data. We present a set of algorithms for autonomous navigation and fine-grained metric-semantic mapping with a team of aerial robots in under-canopy forest environments. Our autonomous UAV system has 3D flight capabilities and relies only on a LIDAR and an IMU for state estimation and mapping. This allows each robot to accurately navigate in challenging forest environments with drastic terrain changes regardless of illumination conditions. Our deep-learning-driven fine-grained metric-semantic mapping module is capable of detecting and extracting detailed information such as the position, orientation, and stem taper profile of trees. This map of tree trunks is represented as a set of sparse cylinder models. Our semantic place recognition module leverages this sparse representation to efficiently estimate the relative transformation between multiple robots, and merge their information to build a globally consistent large-scale map. This ultimately allows us to scale up operations with multiple robots. Our system is able to achieve a mean absolute error of 1.45 cm for diameter estimation and 13.2 cm for relative position estimation between a pair of robots after place recognition and map merging
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传奇3应助渡星河采纳,获得10
刚刚
高贵煜祺完成签到,获得积分10
刚刚
1秒前
煮小鱼发布了新的文献求助10
1秒前
1秒前
1秒前
dingdind完成签到,获得积分10
1秒前
2秒前
Coco发布了新的文献求助10
2秒前
蕊蕊发布了新的文献求助10
2秒前
天天快乐应助WYQ采纳,获得10
2秒前
Apple发布了新的文献求助10
2秒前
Piana完成签到 ,获得积分10
3秒前
埃及下雨了完成签到,获得积分10
3秒前
科研通AI6应助小易采纳,获得10
3秒前
polymershi完成签到,获得积分10
4秒前
zfd完成签到,获得积分10
4秒前
白华苍松发布了新的文献求助10
4秒前
无限行之发布了新的文献求助10
4秒前
科研通AI2S应助Gin_采纳,获得10
5秒前
皮皮完成签到 ,获得积分10
5秒前
6秒前
6秒前
mao发布了新的文献求助30
6秒前
我是老大应助微信研友采纳,获得10
6秒前
Rico发布了新的文献求助10
7秒前
olia发布了新的文献求助10
7秒前
dingdind发布了新的文献求助30
8秒前
8秒前
8秒前
9秒前
谦让的语雪完成签到,获得积分10
9秒前
lcs发布了新的文献求助10
9秒前
9秒前
9秒前
CipherSage应助鳗鱼匕采纳,获得10
10秒前
李爱国应助燕天与采纳,获得10
11秒前
科研通AI6应助polymershi采纳,获得30
11秒前
AD应助踏实芫采纳,获得10
11秒前
sss发布了新的文献求助10
11秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 720
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5587388
求助须知:如何正确求助?哪些是违规求助? 4670503
关于积分的说明 14783142
捐赠科研通 4622601
什么是DOI,文献DOI怎么找? 2531265
邀请新用户注册赠送积分活动 1499954
关于科研通互助平台的介绍 1468066