Mechanical behavior of a novel lattice structure with two-step deformation

各向同性 弹性模量 消散 材料科学 模数 变形机理 变形(气象学) 结构工程 物理 复合材料 微观结构 光学 热力学 工程类
作者
Xiaodong Ma,Ning Zhang,Chuanliang Zhang,Xiaogeng Tian
出处
期刊:Thin-walled Structures [Elsevier]
卷期号:197: 111580-111580 被引量:4
标识
DOI:10.1016/j.tws.2024.111580
摘要

Lattice structures are increasingly attracting attention due to their excellent mechanical properties and broad application prospects. However, most developed lattices feature single-step deformation or single plateau stress, which confine its multi-task applications. Herein, a novel body-centered cubic (NBCC) with two-step deformation based on body-centered cubic (BCC) and bionic fractal design is introduced. NBCC exhibits bi-plateau stress in the stress–strain curves. The underlying mechanism is caused by the bending and buckling deformation of the struts. The mechanical behaviors of NBCC are investigated by finite element simulation which verified by experiment. Compared with traditional BCC, NBCC has improved modulus of elasticity by 88 %, yield strength by 21.2 %, and specific energy absorption by 108 % when ρ′ and α are 0.07 and 0.5, respectively. Moreover, the elastic modulus as well as yield strength increase with geometrical ratio α. The specific energy absorption tends to maximum at the geometric ratio α = 0.6 ∼ 0.7. From the Ashby map, the proposed NBCC lattice possesses high energy absorption, exceeding most of the existing architected materials at the same density. Furthermore, the results show that NBCC has better isotropy of elastic modulus and tends to be more isotropic material compared to BCC. Finally, theoretical model of two-step plateau stress is established based on hinge dissipation principle. This work opens up new insights into the use of element replacement design to create multi-step pathways that can be applied to design engineering structures with multiple tasks and application for impact protection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
老实志泽完成签到,获得积分20
1秒前
1秒前
1秒前
1秒前
hata完成签到,获得积分10
1秒前
Pangsj完成签到,获得积分10
2秒前
2秒前
青蛙旅行完成签到 ,获得积分10
2秒前
FashionBoy应助科研通管家采纳,获得10
2秒前
小蘑菇应助科研通管家采纳,获得10
2秒前
小马甲应助科研通管家采纳,获得10
2秒前
Orange应助科研通管家采纳,获得10
3秒前
小马甲应助mimi采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
英姑应助科研通管家采纳,获得10
3秒前
雪白问兰应助科研通管家采纳,获得30
3秒前
汉堡包应助科研通管家采纳,获得10
3秒前
zzzzzz应助科研通管家采纳,获得20
3秒前
3秒前
爆米花应助科研通管家采纳,获得10
3秒前
sidegate应助科研通管家采纳,获得10
3秒前
prosperp应助科研通管家采纳,获得10
3秒前
香蕉觅云应助科研通管家采纳,获得10
3秒前
li完成签到,获得积分10
3秒前
3秒前
mlml完成签到,获得积分10
3秒前
orixero应助科研通管家采纳,获得10
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
小马甲应助科研通管家采纳,获得10
3秒前
Hello应助科研通管家采纳,获得10
3秒前
Zn应助科研通管家采纳,获得10
3秒前
NexusExplorer应助科研通管家采纳,获得10
3秒前
充电宝应助科研通管家采纳,获得10
3秒前
Jasper应助科研通管家采纳,获得10
3秒前
Zn应助科研通管家采纳,获得10
3秒前
慕青应助科研通管家采纳,获得10
4秒前
所所应助科研通管家采纳,获得10
4秒前
烟花应助科研通管家采纳,获得10
4秒前
烟花应助科研通管家采纳,获得10
4秒前
搜集达人应助科研通管家采纳,获得10
4秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672