清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Generalized robust loss functions for machine learning

铰链损耗 计算机科学 噪音(视频) 功能(生物学) 人工智能 机器学习 核(代数) 算法 数学 支持向量机 图像(数学) 进化生物学 生物 组合数学
作者
Saiji Fu,Xiaoxiao Wang,Jingjing Tang,Shulin Lan,Yingjie Tian
出处
期刊:Neural Networks [Elsevier]
卷期号:171: 200-214 被引量:9
标识
DOI:10.1016/j.neunet.2023.12.013
摘要

Loss function is a critical component of machine learning. Some robust loss functions are proposed to mitigate the adverse effects caused by noise. However, they still face many challenges. Firstly, there is currently a lack of unified frameworks for building robust loss functions in machine learning. Secondly, most of them only care about the occurring noise and pay little attention to those normal points. Thirdly, the resulting performance gain is limited. To this end, we put forward a general framework of robust loss functions for machine learning (RML) with rigorous theoretical analyses, which can smoothly and adaptively flatten any unbounded loss function and apply to various machine learning problems. In RML, an unbounded loss function serves as the target, with the aim of being flattened. A scale parameter is utilized to limit the maximum value of noise points, while a shape parameter is introduced to control both the compactness and the growth rate of the flattened loss function. Later, this framework is employed to flatten the Hinge loss function and the Square loss function. Based on this, we build two robust kernel classifiers called FHSVM and FLSSVM, which can distinguish different types of data. The stochastic variance reduced gradient (SVRG) approach is used to optimize FHSVM and FLSSVM. Extensive experiments demonstrate their superiority, with both consistently occupying the top two positions among all evaluated methods, achieving an average accuracy of 81.07% (accompanied by an F-score of 73.25%) for FHSVM and 81.54% (with an F-score of 75.71%) for FLSSVM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LQ完成签到 ,获得积分20
2秒前
5秒前
川藏客完成签到 ,获得积分10
24秒前
震动的机器猫完成签到,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
壮观以松完成签到,获得积分20
2分钟前
music007完成签到,获得积分10
3分钟前
jyy应助科研通管家采纳,获得10
3分钟前
fareless完成签到 ,获得积分10
4分钟前
HLT完成签到 ,获得积分10
4分钟前
嬗变的天秤完成签到,获得积分10
5分钟前
6分钟前
6分钟前
6分钟前
6分钟前
6分钟前
6分钟前
6分钟前
7分钟前
7分钟前
7分钟前
7分钟前
7分钟前
7分钟前
7分钟前
8分钟前
8分钟前
8分钟前
8分钟前
科研通AI2S应助liudy采纳,获得10
8分钟前
8分钟前
QiaoHL完成签到 ,获得积分10
8分钟前
9分钟前
9分钟前
9分钟前
10分钟前
10分钟前
十二完成签到 ,获得积分10
10分钟前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Handbook of Qualitative Cross-Cultural Research Methods 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139610
求助须知:如何正确求助?哪些是违规求助? 2790479
关于积分的说明 7795394
捐赠科研通 2446958
什么是DOI,文献DOI怎么找? 1301526
科研通“疑难数据库(出版商)”最低求助积分说明 626259
版权声明 601176