阴极
材料科学
纳米技术
储能
电化学
电解质
锂(药物)
工程物理
能量密度
电极
化学
电气工程
物理
工程类
热力学
功率(物理)
物理化学
医学
内分泌学
作者
Jena Akash Kumar Satrughna,Archana Kanwade,Abhishek Srivastava,Manish Kumar Tiwari,Subhash Chand Yadav,Surya Teja Akula,Parasharam M. Shirage
标识
DOI:10.1016/j.mattod.2023.06.013
摘要
Owing to the earth’s abundance and wide availability of natural sodium sources, sodium-ion batteries (SIBs) are potential alternatives to lithium-ion batteries (LIBs). SIBs showcase similar chemistry to LIBs making them likely competitors for smart grid-scale and large-scale energy storage systems. The performance and practical development of SIBs are dependent upon selecting suitable electrodes, electrolytes, additives, and binder materials. This review summarizes the advancement of various cathode materials for SIBs along with other crucial components. Approaches used to improve the electrochemical performance of cathode materials are discussed along with critical challenges and assessments to boost the development of SIBs. We discuss past and present research on advanced cathode materials and propose future strategies for the betterment of SIBs. A major focus is given to theoretical along with experimental work on cathode materials. This review article provides a detailed explanation of the theoretical calculation such as the energy band structure, total density of states, partial/projected density of states, Na+ storage mechanism, and stability through density functional theory (DFT) for various cathode materials. We hope and believe this article will light on some insights into the basic of SIBs and the development of advanced cathode materials.
科研通智能强力驱动
Strongly Powered by AbleSci AI