已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Detecting depression tendency with multimodal features

计算机科学 人工智能 萧条(经济学) 模式治疗法 心理学 心理治疗师 宏观经济学 经济
作者
Hui Zhang,Hong Wang,Shu Han,Wei Li,Luhe Zhuang
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:240: 107702-107702 被引量:9
标识
DOI:10.1016/j.cmpb.2023.107702
摘要

Depression can severely impact physical and mental health and may even harm society. Therefore, detecting the early symptoms of depression and treating them on time is critical. The widespread use of social media has led individuals with depressive tendencies to express their emotions on social platforms, share their painful experiences, and seek support and help. Therefore, the massive available amounts of social platform data provide the possibility of identifying depressive tendencies.This paper proposes a neural network hybrid model MTDD to achieve this goal. Analysis of the content of users' posts on social platforms has facilitated constructing a post-level method to detect depressive tendencies in individuals. Compared with existing methods, the MTDD model uses the following innovative methods: First, this model is based on social platform data, which is objective and accurate, can be obtained at a low cost, and is easy to operate. The model can avoid the influence of subjective factors in the depressive tendency detection method based on consultation with mental health experts. In other words, it can avoid the problem of undisclosed and imperfect data in depressive tendency detection. Second, the MTDD model is based on a deep neural network hybrid model, combining the advantages of CNN and BiLSTM networks and avoiding the problem of poor generalization ability in a single model for depression tendency recognition. Third, the MTDD model is based on multimodal features for learning the vector representation of depression-prone text, including text features, semantic features, and domain knowledge, making the model more robust.Extensive experimental results demonstrate that our MTDD model detects users who may have a depressive tendency with a 95% F1 value and obtained SOTA results.Our MTDD model can detect depressive users on social media platforms more effectively, providing the possibility for early diagnosis and timely treatment of depression. The experiment proves that our MTDD model outperforms many of the latest depressive tendency detection models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
笨笨猪完成签到,获得积分10
4秒前
kkkkkoi发布了新的文献求助10
4秒前
害怕的千山关注了科研通微信公众号
4秒前
5秒前
6秒前
共享精神应助liuliuliu采纳,获得10
7秒前
Orange应助Quincy采纳,获得10
7秒前
霸气雪珍完成签到,获得积分10
7秒前
bkagyin应助伶俐问薇采纳,获得10
8秒前
jessie完成签到,获得积分10
8秒前
10秒前
妮妮发布了新的文献求助10
11秒前
咬一口甜发布了新的文献求助10
11秒前
Steven发布了新的文献求助30
12秒前
zj发布了新的文献求助10
14秒前
舒心一兰发布了新的文献求助30
15秒前
15秒前
16秒前
kkkkkoi完成签到,获得积分20
19秒前
19秒前
科研小白发布了新的文献求助10
21秒前
Quincy发布了新的文献求助10
22秒前
23秒前
SmoonYK发布了新的文献求助10
24秒前
24秒前
27秒前
27秒前
28秒前
伶俐问薇发布了新的文献求助10
29秒前
李健应助淡定的达达采纳,获得10
30秒前
31秒前
栗子发布了新的文献求助10
31秒前
竹子发布了新的文献求助30
33秒前
帅气恋风发布了新的文献求助10
33秒前
诸乘风发布了新的文献求助10
33秒前
34秒前
zheng完成签到 ,获得积分10
35秒前
甜蜜冰颜发布了新的文献求助10
35秒前
37秒前
李爱国应助彭笑笑采纳,获得10
38秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 量子力学 冶金 电极
热门帖子
关注 科研通微信公众号,转发送积分 3316734
求助须知:如何正确求助?哪些是违规求助? 2948521
关于积分的说明 8540998
捐赠科研通 2624376
什么是DOI,文献DOI怎么找? 1436156
科研通“疑难数据库(出版商)”最低求助积分说明 665796
邀请新用户注册赠送积分活动 651738