Self-Supervised Learning for High-Resolution Remote Sensing Images Change Detection With Variational Information Bottleneck

计算机科学 人工智能 稳健性(进化) 变更检测 机器学习 特征提取 瓶颈 模式识别(心理学) 特征学习 深度学习 目标检测 数据挖掘 嵌入式系统 生物化学 化学 基因
作者
Congcong Wang,Shouhang Du,Wei Sun,Deng-Ping Fan
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:16: 5849-5866 被引量:1
标识
DOI:10.1109/jstars.2023.3288294
摘要

Notable achievements have been made in remote sensing images change detection with sample-driven supervised deep learning methods. However, the requirement of the number of labeled samples is impractical for many practical applications, which is a major constraint to the development of supervised deep learning methods. Self-supervised learning using unlabeled data to construct pretext tasks for model pre-training can largely alleviate the sample dilemma faced by deep learning. And the construction of pretext task is the key to the performance of downstream task. In this work, an improved contrastive self-supervised pretext task that is more suitable for the downstream change detection is proposed. Specifically, an improved Siamese network which is a change detection-like architecture is trained to extract multi-level fusion features from different image pairs, both globally and locally. And on this basis, the contrastive loss between feature pairs is minimized to extract more valuable feature representation for downstream change detection. In addition, to further alleviate the problem of little priori information and much image noise in the downstream few-sample change detection, we propose to use variational information bottleneck (VIB) theory to provide explicit regularization constraint for the model. Compared with other methods, our method shows better performance with stronger robustness and finer detection results in both quantitative and qualitative results of two publicly available datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
闪闪龙猫发布了新的文献求助10
1秒前
kayn发布了新的文献求助10
2秒前
2秒前
Akim应助Camellia采纳,获得30
3秒前
6秒前
飞龙在天完成签到,获得积分10
7秒前
LJN.up发布了新的文献求助10
8秒前
maomao39029完成签到,获得积分10
8秒前
KK完成签到 ,获得积分10
8秒前
liangliu发布了新的文献求助10
9秒前
脑洞疼应助小橘采纳,获得10
9秒前
10秒前
Lucas应助一别如斯采纳,获得10
12秒前
SciGPT应助张Z采纳,获得10
13秒前
14秒前
14秒前
14秒前
luoyn完成签到,获得积分10
15秒前
ericzhouxx完成签到,获得积分10
17秒前
17秒前
迅速泽洋完成签到,获得积分10
18秒前
jiabao发布了新的文献求助10
18秒前
xiaoji发布了新的文献求助10
18秒前
WuYiHHH发布了新的文献求助10
18秒前
拾贰发布了新的文献求助30
19秒前
XLH完成签到,获得积分10
19秒前
Jenny发布了新的文献求助10
20秒前
21秒前
21秒前
田様应助ericzhouxx采纳,获得10
22秒前
千纸鹤发布了新的文献求助10
23秒前
小橘发布了新的文献求助10
24秒前
upupup发布了新的文献求助10
25秒前
25秒前
lhl发布了新的文献求助10
26秒前
mit发布了新的文献求助10
27秒前
爱76的5发布了新的文献求助20
27秒前
27秒前
清弦发布了新的文献求助10
30秒前
852应助六六采纳,获得10
30秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3228715
求助须知:如何正确求助?哪些是违规求助? 2876473
关于积分的说明 8195167
捐赠科研通 2543670
什么是DOI,文献DOI怎么找? 1373912
科研通“疑难数据库(出版商)”最低求助积分说明 646868
邀请新用户注册赠送积分活动 621453