Self-Supervised Learning for High-Resolution Remote Sensing Images Change Detection With Variational Information Bottleneck

计算机科学 人工智能 稳健性(进化) 变更检测 机器学习 特征提取 瓶颈 模式识别(心理学) 特征学习 深度学习 目标检测 数据挖掘 生物化学 基因 嵌入式系统 化学
作者
Congcong Wang,Shouhang Du,Wei Sun,Deng-Ping Fan
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:16: 5849-5866 被引量:1
标识
DOI:10.1109/jstars.2023.3288294
摘要

Notable achievements have been made in remote sensing images change detection with sample-driven supervised deep learning methods. However, the requirement of the number of labeled samples is impractical for many practical applications, which is a major constraint to the development of supervised deep learning methods. Self-supervised learning using unlabeled data to construct pretext tasks for model pre-training can largely alleviate the sample dilemma faced by deep learning. And the construction of pretext task is the key to the performance of downstream task. In this work, an improved contrastive self-supervised pretext task that is more suitable for the downstream change detection is proposed. Specifically, an improved Siamese network which is a change detection-like architecture is trained to extract multi-level fusion features from different image pairs, both globally and locally. And on this basis, the contrastive loss between feature pairs is minimized to extract more valuable feature representation for downstream change detection. In addition, to further alleviate the problem of little priori information and much image noise in the downstream few-sample change detection, we propose to use variational information bottleneck (VIB) theory to provide explicit regularization constraint for the model. Compared with other methods, our method shows better performance with stronger robustness and finer detection results in both quantitative and qualitative results of two publicly available datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
皮皮鲁完成签到,获得积分10
刚刚
刚刚
易烊干洗完成签到,获得积分20
1秒前
1秒前
李浩然完成签到,获得积分10
1秒前
JONY完成签到 ,获得积分10
2秒前
土豆完成签到,获得积分20
2秒前
2秒前
2秒前
633发布了新的文献求助10
3秒前
chen发布了新的文献求助30
3秒前
格物致知发布了新的文献求助10
3秒前
俊逸香岚完成签到,获得积分10
3秒前
4秒前
4秒前
4秒前
wop111发布了新的文献求助10
4秒前
4秒前
蚂蚁Y嘿发布了新的文献求助10
5秒前
5秒前
5秒前
5秒前
6秒前
6秒前
6秒前
6秒前
7秒前
catch完成签到,获得积分10
7秒前
研友_VZG7GZ应助科研通管家采纳,获得10
7秒前
打打应助科研通管家采纳,获得10
7秒前
所所应助科研通管家采纳,获得10
8秒前
Jasper应助科研通管家采纳,获得10
8秒前
君子兰完成签到,获得积分10
8秒前
残荷听雨发布了新的文献求助10
8秒前
小青椒应助科研通管家采纳,获得10
8秒前
小青椒应助科研通管家采纳,获得10
8秒前
8秒前
122319应助科研通管家采纳,获得10
8秒前
充电宝应助科研通管家采纳,获得10
8秒前
元谷雪应助科研通管家采纳,获得10
9秒前
高分求助中
合成生物食品制造技术导则,团体标准,编号:T/CITS 396-2025 1000
The Leucovorin Guide for Parents: Understanding Autism’s Folate 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Fermented Coffee Market 500
Comparing natural with chemical additive production 500
Atlas of Liver Pathology: A Pattern-Based Approach 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5238122
求助须知:如何正确求助?哪些是违规求助? 4405802
关于积分的说明 13711768
捐赠科研通 4274090
什么是DOI,文献DOI怎么找? 2345419
邀请新用户注册赠送积分活动 1342496
关于科研通互助平台的介绍 1300416