Self-Supervised Learning for High-Resolution Remote Sensing Images Change Detection With Variational Information Bottleneck

计算机科学 人工智能 稳健性(进化) 变更检测 机器学习 特征提取 瓶颈 模式识别(心理学) 特征学习 深度学习 目标检测 数据挖掘 生物化学 基因 嵌入式系统 化学
作者
Congcong Wang,Shouhang Du,Wei Sun,Deng-Ping Fan
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:16: 5849-5866 被引量:1
标识
DOI:10.1109/jstars.2023.3288294
摘要

Notable achievements have been made in remote sensing images change detection with sample-driven supervised deep learning methods. However, the requirement of the number of labeled samples is impractical for many practical applications, which is a major constraint to the development of supervised deep learning methods. Self-supervised learning using unlabeled data to construct pretext tasks for model pre-training can largely alleviate the sample dilemma faced by deep learning. And the construction of pretext task is the key to the performance of downstream task. In this work, an improved contrastive self-supervised pretext task that is more suitable for the downstream change detection is proposed. Specifically, an improved Siamese network which is a change detection-like architecture is trained to extract multi-level fusion features from different image pairs, both globally and locally. And on this basis, the contrastive loss between feature pairs is minimized to extract more valuable feature representation for downstream change detection. In addition, to further alleviate the problem of little priori information and much image noise in the downstream few-sample change detection, we propose to use variational information bottleneck (VIB) theory to provide explicit regularization constraint for the model. Compared with other methods, our method shows better performance with stronger robustness and finer detection results in both quantitative and qualitative results of two publicly available datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
rykkk发布了新的文献求助10
刚刚
小刘发布了新的文献求助10
刚刚
1秒前
万能图书馆应助独特飞机采纳,获得10
1秒前
SciGPT应助卜学英采纳,获得10
2秒前
小马甲应助哭泣的宛丝采纳,获得10
2秒前
2秒前
深情安青应助酷炫的铸海采纳,获得10
3秒前
3秒前
yuon发布了新的文献求助10
4秒前
龙月完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助50
5秒前
6秒前
爆米花应助5433采纳,获得10
6秒前
李大锤发布了新的文献求助10
7秒前
8秒前
乐乐应助GGZ采纳,获得10
8秒前
明月清风发布了新的文献求助10
8秒前
教育厮完成签到,获得积分10
9秒前
硕大的肌肉完成签到,获得积分10
9秒前
10秒前
无花果应助GGZ采纳,获得10
12秒前
所所应助GGZ采纳,获得10
12秒前
汉堡包应助整齐千柳采纳,获得10
12秒前
12秒前
我是老大应助droke采纳,获得10
12秒前
mike_007发布了新的文献求助10
12秒前
Dr. Chen发布了新的文献求助10
13秒前
14秒前
shi发布了新的文献求助10
15秒前
眼圆广志完成签到,获得积分10
15秒前
大模型应助不二采纳,获得10
16秒前
16秒前
16秒前
量子星尘发布了新的文献求助10
17秒前
科研通AI6应助最爱吃火锅采纳,获得10
17秒前
18秒前
gx发布了新的文献求助10
18秒前
跳跃笑阳发布了新的文献求助10
19秒前
clamon完成签到,获得积分10
19秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5125515
求助须知:如何正确求助?哪些是违规求助? 4329288
关于积分的说明 13490854
捐赠科研通 4164202
什么是DOI,文献DOI怎么找? 2282786
邀请新用户注册赠送积分活动 1283874
关于科研通互助平台的介绍 1223196