Self-Supervised Learning for High-Resolution Remote Sensing Images Change Detection With Variational Information Bottleneck

计算机科学 人工智能 稳健性(进化) 变更检测 机器学习 特征提取 瓶颈 模式识别(心理学) 特征学习 深度学习 目标检测 数据挖掘 生物化学 基因 嵌入式系统 化学
作者
Congcong Wang,Shouhang Du,Wei Sun,Deng-Ping Fan
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:16: 5849-5866 被引量:1
标识
DOI:10.1109/jstars.2023.3288294
摘要

Notable achievements have been made in remote sensing images change detection with sample-driven supervised deep learning methods. However, the requirement of the number of labeled samples is impractical for many practical applications, which is a major constraint to the development of supervised deep learning methods. Self-supervised learning using unlabeled data to construct pretext tasks for model pre-training can largely alleviate the sample dilemma faced by deep learning. And the construction of pretext task is the key to the performance of downstream task. In this work, an improved contrastive self-supervised pretext task that is more suitable for the downstream change detection is proposed. Specifically, an improved Siamese network which is a change detection-like architecture is trained to extract multi-level fusion features from different image pairs, both globally and locally. And on this basis, the contrastive loss between feature pairs is minimized to extract more valuable feature representation for downstream change detection. In addition, to further alleviate the problem of little priori information and much image noise in the downstream few-sample change detection, we propose to use variational information bottleneck (VIB) theory to provide explicit regularization constraint for the model. Compared with other methods, our method shows better performance with stronger robustness and finer detection results in both quantitative and qualitative results of two publicly available datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
npknpk完成签到,获得积分10
1秒前
FashionBoy应助淡然的夜柳采纳,获得10
1秒前
bkagyin应助橘子味汽水采纳,获得10
2秒前
3秒前
电催化CYY完成签到,获得积分10
3秒前
ALOHA完成签到,获得积分10
3秒前
3秒前
半夏不泻心完成签到,获得积分10
3秒前
鲤鱼白玉发布了新的文献求助10
4秒前
王洋发布了新的文献求助10
4秒前
4秒前
4秒前
汉堡包应助小黄在忙采纳,获得10
5秒前
6秒前
Jian发布了新的文献求助10
6秒前
111完成签到 ,获得积分10
6秒前
努力发芽的小黄豆完成签到 ,获得积分10
6秒前
7秒前
赘婿应助高高的夏菡采纳,获得10
7秒前
7秒前
8秒前
Orgcao完成签到,获得积分10
8秒前
8秒前
8秒前
9秒前
9秒前
10秒前
大道希言发布了新的文献求助10
10秒前
愤怒的山兰完成签到,获得积分10
11秒前
Jonathan完成签到,获得积分10
11秒前
三土有兀完成签到,获得积分10
13秒前
负责半蕾发布了新的文献求助10
13秒前
zzx发布了新的文献求助10
13秒前
小萝卜123发布了新的文献求助10
14秒前
不安晓绿完成签到,获得积分20
14秒前
爱笑乞发布了新的文献求助10
14秒前
卜汁道完成签到,获得积分10
15秒前
嘻嘻哈哈应助研友_Good Hope采纳,获得10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《微型计算机》杂志2006年增刊 1600
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4960295
求助须知:如何正确求助?哪些是违规求助? 4220812
关于积分的说明 13144476
捐赠科研通 4004657
什么是DOI,文献DOI怎么找? 2191579
邀请新用户注册赠送积分活动 1205760
关于科研通互助平台的介绍 1116920