High‐Rate CO2 Electrolysis to Formic Acid over a Wide Potential Window: An Electrocatalyst Comprised of Indium Nanoparticles on Chitosan‐Derived Graphene

电催化剂 双功能 石墨烯 催化作用 法拉第效率 电解 纳米颗粒 电化学 吸附 甲酸 化学工程 材料科学 无机化学 电极 化学 纳米技术 电解质 物理化学 有机化学 工程类
作者
Jiahui Bi,Pengsong Li,Jiyuan Liu,Yong Wang,Xinning Song,Xinchen Kang,Xiaofu Sun,Qinggong Zhu,Buxing Han
出处
期刊:Angewandte Chemie [Wiley]
卷期号:135 (36) 被引量:2
标识
DOI:10.1002/ange.202307612
摘要

Abstract Realizing industrial‐scale production of HCOOH from the CO 2 reduction reaction (CO 2 RR) is very important, but the current density as well as the electrochemical potential window are still limited to date. Herein, we achieved this by integration of chemical adsorption and electrocatalytic capabilities for the CO 2 RR via anchoring In nanoparticles (NPs) on biomass‐derived substrates to create In/X−C (X=N, P, B) bifunctional active centers. The In NPs/chitosan‐derived N‐doped defective graphene (In/N‐dG) catalyst had outstanding performance for the CO 2 RR with a nearly 100 % Faradaic efficiency (FE) of HCOOH across a wide potential window. Particularly, at 1.2 A ⋅ cm −2 high current density, the FE of HCOOH was as high as 96.0 %, and the reduction potential was as low as −1.17 V vs RHE. When using a membrane electrode assembly (MEA), a pure HCOOH solution could be obtained at the cathode without further separation and purification. The FE of HCOOH was still up to 93.3 % at 0.52 A ⋅ cm −2 , and the HCOOH production rate could reach 9.051 mmol ⋅ h −1 ⋅ cm −2 . Our results suggested that the defects and multilayer structure in In/N‐dG could not only enhance CO 2 chemical adsorption capability, but also trigger the formation of an electron‐rich catalytic environment around In sites to promote the generation of HCOOH.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
边港洋完成签到,获得积分10
1秒前
1秒前
凤羽发布了新的文献求助10
2秒前
灵巧听露发布了新的文献求助10
2秒前
可爱的函函应助猫猫无敌采纳,获得10
4秒前
量子星尘发布了新的文献求助10
4秒前
5秒前
6秒前
爆米花应助刁弘睿采纳,获得10
6秒前
6秒前
6秒前
缥缈海云完成签到,获得积分10
6秒前
7秒前
斯文败类应助沙场秋点兵采纳,获得10
8秒前
123完成签到,获得积分10
8秒前
9秒前
无辜问玉发布了新的文献求助10
9秒前
9秒前
10秒前
谨慎乐安发布了新的文献求助10
10秒前
12秒前
量子星尘发布了新的文献求助10
13秒前
缥缈海云发布了新的文献求助10
13秒前
mylaodao发布了新的文献求助10
13秒前
14秒前
chen完成签到,获得积分10
15秒前
拾贰月发布了新的文献求助10
15秒前
俊杰完成签到,获得积分10
16秒前
阿菜完成签到,获得积分10
16秒前
wanghao完成签到,获得积分20
16秒前
善学以致用应助songjiatian采纳,获得10
17秒前
18秒前
18秒前
善学以致用应助追忆淮采纳,获得10
19秒前
Hello应助靓丽凝海采纳,获得10
19秒前
19秒前
毛笑冉完成签到,获得积分10
19秒前
fine发布了新的文献求助10
19秒前
20秒前
无辜问玉完成签到,获得积分10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718021
求助须知:如何正确求助?哪些是违规求助? 5250051
关于积分的说明 15284272
捐赠科研通 4868198
什么是DOI,文献DOI怎么找? 2614063
邀请新用户注册赠送积分活动 1563973
关于科研通互助平台的介绍 1521425