Metabolic engineering of Escherichia coli for efficient production of linalool from biodiesel-derived glycerol by targeting cofactors regeneration and reducing acetate accumulation

芳樟醇 代谢工程 化学 大肠杆菌 甘油 生物化学 发酵 商品化学品 食品科学 催化作用 精油 基因
作者
Xun Wang,Xinyi Zhang,Jia Zhang,Longjie Xiao,Yujunjie Zhou,Fei Wang,Xun Li
出处
期刊:Industrial Crops and Products [Elsevier BV]
卷期号:203: 117152-117152 被引量:6
标识
DOI:10.1016/j.indcrop.2023.117152
摘要

Linalool is a valuable monoterpenoid compound commercially used in cosmetics and personal care industry as well as a 'drop-in' biofuel. Direct plant extraction or chemical synthesis of linalool suffers from insufficient abundance in plant and inefficient purification procedures. Herein, a powerful green cell factory has been developed to meet the increasing demands for more sustainable and efficient production of this terpene alcohol. The de novo production of linalool from biodiesel-derived glycerol was achieved by engineered Escherichia coli harboring the exogenous mevalonate pathway followed by coupling with geranyl diphosphate synthase and linalool synthase (LIS). Then, the Mentha aquatica LIS showing the most efficient linalool biosynthesis was identified, and subsequently tuned by ribosomal binding site (RBS) engineering and site-directed mutagenesis to facilitate linalool production. A further engineered strain equipped with an engineered NADP+-dependent pyruvate dehydrogenase complex (PDH) and phosphoketolase bypass, remarkably decreasing the by-products formation together with boosting substrate utilization efficiency. A final titer of 1.07 g/L linalool with a yield of 0.10 g/g glycerol was gained in flask culture and further increase to 4.16 g/L in 2-L fed-batch fermentation, which is the highest reported linalool titer and yield in E. coli to the best of our knowledge. In addition, the engineering strategies established here not only lay a potential production platform for linalool and its derivatives, but also provide references to minimize by-products secretion and improve carbon use efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI5应助Docsiwen采纳,获得10
1秒前
普通用户30号完成签到 ,获得积分10
2秒前
lzl完成签到,获得积分20
3秒前
4秒前
4秒前
科研通AI5应助揽月yue采纳,获得10
5秒前
6秒前
小杨杨完成签到,获得积分10
6秒前
1561giou完成签到,获得积分20
6秒前
欧皇发布了新的文献求助30
6秒前
小鹿发布了新的文献求助10
7秒前
方圆完成签到,获得积分10
7秒前
科研通AI5应助Huang_being采纳,获得10
7秒前
小幸运完成签到,获得积分10
7秒前
包破茧完成签到,获得积分10
7秒前
8秒前
8秒前
8秒前
Coo-kie99发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
10秒前
Ava应助爱太阳的阿喵采纳,获得10
11秒前
12秒前
苹果白凡发布了新的文献求助10
12秒前
喜悦的向珊完成签到,获得积分20
12秒前
今天的风儿甚是喧嚣完成签到,获得积分10
13秒前
13秒前
Chris完成签到,获得积分10
13秒前
13秒前
13秒前
AlexanderNEIL发布了新的文献求助10
13秒前
江南之南完成签到 ,获得积分10
14秒前
16秒前
认真子默完成签到,获得积分10
16秒前
大模型应助尊敬的夏槐采纳,获得10
16秒前
16秒前
量子星尘发布了新的文献求助10
17秒前
蘇q完成签到 ,获得积分10
17秒前
852应助浅蓝色采纳,获得10
18秒前
solar发布了新的文献求助10
18秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The Insulin Resistance Epidemic: Uncovering the Root Cause of Chronic Disease  500
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3662070
求助须知:如何正确求助?哪些是违规求助? 3222916
关于积分的说明 9749481
捐赠科研通 2932714
什么是DOI,文献DOI怎么找? 1605824
邀请新用户注册赠送积分活动 758141
科研通“疑难数据库(出版商)”最低求助积分说明 734700