清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Exact Dirichlet boundary Physics-informed Neural Network EPINN for solid mechanics

Dirichlet边界条件 边值问题 应用数学 边界(拓扑) 虚拟工作 人工神经网络 有限元法 偏微分方程 数学 数学分析 计算机科学 物理 人工智能 热力学
作者
Jiaji Wang,Y. L. Mo,B.A. Izzuddin,Chul‐Woo Kim
出处
期刊:Computer Methods in Applied Mechanics and Engineering [Elsevier BV]
卷期号:414: 116184-116184 被引量:12
标识
DOI:10.1016/j.cma.2023.116184
摘要

Physics-informed neural networks (PINNs) have been rapidly developed for solving partial differential equations. The Exact Dirichlet boundary condition Physics-informed Neural Network (EPINN) is proposed to achieve efficient simulation of solid mechanics problems based on the principle of least work with notably reduced training time. There are five major building features in the EPINN framework. First, for the 1D solid mechanics problem, the neural networks are formulated to exactly replicate the shape function of linear or quadratic truss elements. Second, for 2D and 3D problems, the tensor decomposition was adopted to build the solution field without the need of generating the finite element mesh of complicated structures to reduce the number of trainable weights in the PINN framework. Third, the principle of least work was adopted to formulate the loss function. Fourth, the exact Dirichlet boundary condition (i.e., displacement boundary condition) was implemented. Finally, the meshless finite difference (MFD) was adopted to calculate gradient information efficiently. By minimizing the total energy of the system, the loss function is selected to be the same as the total work of the system, which is the total strain energy minus the external work done on the Neumann boundary conditions (i.e., force boundary conditions). The exact Dirichlet boundary condition was implemented as a hard constraint compared to the soft constraint (i.e., added as additional terms in the loss function), which exactly meets the requirement of the principle of least work. The EPINN framework is implemented in the Nvidia Modulus platform and GPU-based supercomputer and has achieved notably reduced training time compared to the conventional PINN framework for solid mechanics problems. Typical numerical examples are presented. The convergence of EPINN is reported and the training time of EPINN is compared to conventional PINN architecture and finite element solvers. Compared to conventional PINN architecture, EPINN achieved a speedup of more than 13 times for 1D problems and more than 126 times for 3D problems. The simulation results show that EPINN can even reach the convergence speed of finite element software. In addition, the prospective implementations of the proposed EPINN framework in solid mechanics are proposed, including nonlinear time-dependent simulation and super-resolution network.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英俊的铭应助典雅的荣轩采纳,获得10
6秒前
知行者完成签到 ,获得积分10
8秒前
小鱼女侠完成签到 ,获得积分10
18秒前
房天川完成签到 ,获得积分10
18秒前
水天一色发布了新的文献求助10
27秒前
jerry完成签到 ,获得积分10
31秒前
啾一口香菜完成签到 ,获得积分10
32秒前
量子星尘发布了新的文献求助10
51秒前
胡可完成签到 ,获得积分10
57秒前
沙海沉戈完成签到,获得积分0
1分钟前
无悔完成签到 ,获得积分10
1分钟前
1分钟前
负责以山完成签到 ,获得积分10
1分钟前
zzzzz发布了新的文献求助10
1分钟前
烟雨江南完成签到,获得积分10
1分钟前
wyh295352318完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
2分钟前
zzzzz完成签到,获得积分10
2分钟前
2分钟前
2分钟前
刘刘完成签到 ,获得积分10
3分钟前
hyxu678完成签到,获得积分10
3分钟前
雷小牛完成签到 ,获得积分10
3分钟前
小蝴蝶完成签到,获得积分20
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
小蝴蝶发布了新的文献求助10
3分钟前
Binggo完成签到,获得积分10
4分钟前
4分钟前
4分钟前
搞怪莫茗发布了新的文献求助10
4分钟前
Lillianzhu1完成签到,获得积分10
4分钟前
4分钟前
淡定的幻枫完成签到 ,获得积分10
5分钟前
量子星尘发布了新的文献求助10
5分钟前
yao完成签到 ,获得积分10
5分钟前
幸福的鑫鹏完成签到 ,获得积分10
5分钟前
5分钟前
搞怪莫茗完成签到,获得积分10
5分钟前
典雅的荣轩完成签到,获得积分10
5分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015363
求助须知:如何正确求助?哪些是违规求助? 3555313
关于积分的说明 11317959
捐赠科研通 3288629
什么是DOI,文献DOI怎么找? 1812284
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 811983