Exact Dirichlet boundary Physics-informed Neural Network EPINN for solid mechanics

Dirichlet边界条件 边值问题 应用数学 边界(拓扑) 虚拟工作 人工神经网络 有限元法 偏微分方程 数学 数学分析 计算机科学 物理 人工智能 热力学
作者
Jiaji Wang,Y. L. Mo,B.A. Izzuddin,Chul‐Woo Kim
出处
期刊:Computer Methods in Applied Mechanics and Engineering [Elsevier]
卷期号:414: 116184-116184 被引量:62
标识
DOI:10.1016/j.cma.2023.116184
摘要

Physics-informed neural networks (PINNs) have been rapidly developed for solving partial differential equations. The Exact Dirichlet boundary condition Physics-informed Neural Network (EPINN) is proposed to achieve efficient simulation of solid mechanics problems based on the principle of least work with notably reduced training time. There are five major building features in the EPINN framework. First, for the 1D solid mechanics problem, the neural networks are formulated to exactly replicate the shape function of linear or quadratic truss elements. Second, for 2D and 3D problems, the tensor decomposition was adopted to build the solution field without the need of generating the finite element mesh of complicated structures to reduce the number of trainable weights in the PINN framework. Third, the principle of least work was adopted to formulate the loss function. Fourth, the exact Dirichlet boundary condition (i.e., displacement boundary condition) was implemented. Finally, the meshless finite difference (MFD) was adopted to calculate gradient information efficiently. By minimizing the total energy of the system, the loss function is selected to be the same as the total work of the system, which is the total strain energy minus the external work done on the Neumann boundary conditions (i.e., force boundary conditions). The exact Dirichlet boundary condition was implemented as a hard constraint compared to the soft constraint (i.e., added as additional terms in the loss function), which exactly meets the requirement of the principle of least work. The EPINN framework is implemented in the Nvidia Modulus platform and GPU-based supercomputer and has achieved notably reduced training time compared to the conventional PINN framework for solid mechanics problems. Typical numerical examples are presented. The convergence of EPINN is reported and the training time of EPINN is compared to conventional PINN architecture and finite element solvers. Compared to conventional PINN architecture, EPINN achieved a speedup of more than 13 times for 1D problems and more than 126 times for 3D problems. The simulation results show that EPINN can even reach the convergence speed of finite element software. In addition, the prospective implementations of the proposed EPINN framework in solid mechanics are proposed, including nonlinear time-dependent simulation and super-resolution network.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无辜秋珊完成签到,获得积分10
刚刚
刚刚
领导范儿应助浮浮世世采纳,获得10
刚刚
Omni发布了新的文献求助20
1秒前
jimmy发布了新的文献求助10
1秒前
玉清发布了新的文献求助10
1秒前
yvonne完成签到 ,获得积分10
3秒前
3秒前
4秒前
charles发布了新的文献求助10
5秒前
orixero应助Savannah采纳,获得10
5秒前
sxj发布了新的文献求助10
6秒前
orixero应助项南风采纳,获得10
7秒前
传奇3应助ym采纳,获得10
9秒前
求助人员发布了新的文献求助10
9秒前
9秒前
10秒前
小怪兽完成签到 ,获得积分10
10秒前
量子星尘发布了新的文献求助10
11秒前
11秒前
所所应助科研通管家采纳,获得10
11秒前
Ava应助科研通管家采纳,获得10
11秒前
11秒前
ding应助科研通管家采纳,获得30
11秒前
Owen应助科研通管家采纳,获得10
11秒前
11秒前
NexusExplorer应助科研通管家采纳,获得10
11秒前
在水一方应助科研通管家采纳,获得10
11秒前
Ava应助科研通管家采纳,获得10
11秒前
11秒前
小蘑菇应助科研通管家采纳,获得10
11秒前
香蕉觅云应助科研通管家采纳,获得10
11秒前
11秒前
桐桐应助科研通管家采纳,获得10
11秒前
Whim应助科研通管家采纳,获得50
12秒前
完美世界应助科研通管家采纳,获得10
12秒前
李健应助科研通管家采纳,获得10
12秒前
12秒前
完美世界应助科研通管家采纳,获得10
12秒前
Orange应助科研通管家采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5720240
求助须知:如何正确求助?哪些是违规求助? 5259215
关于积分的说明 15290544
捐赠科研通 4869684
什么是DOI,文献DOI怎么找? 2614942
邀请新用户注册赠送积分活动 1564958
关于科研通互助平台的介绍 1522093