补偿(心理学)
计算机科学
钥匙(锁)
均方预测误差
序列(生物学)
分解
晶体管
模式(计算机接口)
领域(数学)
功率(物理)
算法
人工智能
电压
工程类
数学
电气工程
物理
心理学
生态学
计算机安全
量子力学
生物
精神分析
纯数学
遗传学
操作系统
作者
Hongyu Ren,Yaoyi Yu,Junliang Liu,Junjie Zhou,Xiong Du
出处
期刊:IEICE Electronics Express
[Institute of Electronics, Information and Communication Engineers]
日期:2023-06-27
卷期号:20 (16): 20230277-20230277
被引量:2
标识
DOI:10.1587/elex.20.20230277
摘要
Accurate prediction of the remaining useful life (RUL) of metal oxide semiconductor field effect transistors (MOSFETs) is the key to safe and reliable operation of power electronics. In this paper, we combine long short-term memory (LSTM) networks with successive variational mode decomposition (SVMD) and use error compensation methods to build a lifetime prediction model, which improves the performance of the prediction model by reducing the interaction between different sequences and using error sequence compensation. The results show that, compared with the Bayesian optimized LSTM, the method has the advantages of high prediction accuracy and low prediction uncertainty.
科研通智能强力驱动
Strongly Powered by AbleSci AI