亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

iAMPCN: a deep-learning approach for identifying antimicrobial peptides and their functional activities

抗菌肽 鉴定(生物学) 计算机科学 标杆管理 人工智能 机器学习 冗余(工程) 计算生物学 抗菌剂 生物 植物 营销 微生物学 业务 操作系统
作者
Jing Xu,Fuyi Li,Chen Li,Xudong Guo,Cornelia B. Landersdorfer,Hsin‐Hui Shen,Anton Y. Peleg,Jian Li,Seiya Imoto,Jianhua Yao,Tatsuya Akutsu,Jiangning Song
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (4) 被引量:28
标识
DOI:10.1093/bib/bbad240
摘要

Antimicrobial peptides (AMPs) are short peptides that play crucial roles in diverse biological processes and have various functional activities against target organisms. Due to the abuse of chemical antibiotics and microbial pathogens' increasing resistance to antibiotics, AMPs have the potential to be alternatives to antibiotics. As such, the identification of AMPs has become a widely discussed topic. A variety of computational approaches have been developed to identify AMPs based on machine learning algorithms. However, most of them are not capable of predicting the functional activities of AMPs, and those predictors that can specify activities only focus on a few of them. In this study, we first surveyed 10 predictors that can identify AMPs and their functional activities in terms of the features they employed and the algorithms they utilized. Then, we constructed comprehensive AMP datasets and proposed a new deep learning-based framework, iAMPCN (identification of AMPs based on CNNs), to identify AMPs and their related 22 functional activities. Our experiments demonstrate that iAMPCN significantly improved the prediction performance of AMPs and their corresponding functional activities based on four types of sequence features. Benchmarking experiments on the independent test datasets showed that iAMPCN outperformed a number of state-of-the-art approaches for predicting AMPs and their functional activities. Furthermore, we analyzed the amino acid preferences of different AMP activities and evaluated the model on datasets of varying sequence redundancy thresholds. To facilitate the community-wide identification of AMPs and their corresponding functional types, we have made the source codes of iAMPCN publicly available at https://github.com/joy50706/iAMPCN/tree/master. We anticipate that iAMPCN can be explored as a valuable tool for identifying potential AMPs with specific functional activities for further experimental validation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
其乐融融发布了新的文献求助10
4分钟前
其乐融融完成签到,获得积分10
4分钟前
bkagyin应助Jennie采纳,获得10
4分钟前
科目三应助Wei采纳,获得10
5分钟前
小绵羊发布了新的文献求助10
5分钟前
果酱完成签到,获得积分10
5分钟前
白华苍松发布了新的文献求助20
6分钟前
白华苍松发布了新的文献求助20
7分钟前
7分钟前
7分钟前
Jennie完成签到,获得积分10
7分钟前
Jennie发布了新的文献求助10
7分钟前
白华苍松发布了新的文献求助20
7分钟前
故意的冰淇淋完成签到 ,获得积分10
8分钟前
白华苍松发布了新的文献求助20
8分钟前
小绵羊发布了新的文献求助10
8分钟前
8分钟前
hmhu发布了新的文献求助10
8分钟前
科研通AI2S应助Shilong采纳,获得10
9分钟前
9分钟前
Alex-Song完成签到 ,获得积分0
10分钟前
白华苍松发布了新的文献求助20
10分钟前
lanxinge完成签到 ,获得积分10
10分钟前
小绵羊完成签到,获得积分20
10分钟前
marska完成签到,获得积分10
10分钟前
冬去春来完成签到 ,获得积分10
10分钟前
白华苍松发布了新的文献求助20
11分钟前
白华苍松发布了新的文献求助20
12分钟前
000完成签到 ,获得积分10
12分钟前
kokoko完成签到,获得积分10
13分钟前
JamesPei应助fhznuli采纳,获得10
14分钟前
14分钟前
fhznuli发布了新的文献求助10
14分钟前
14分钟前
白华苍松完成签到,获得积分10
15分钟前
春山完成签到 ,获得积分10
15分钟前
harry2021完成签到,获得积分10
16分钟前
学术小白完成签到,获得积分10
16分钟前
慕青应助linhanwenzhou采纳,获得10
16分钟前
蔡从安发布了新的文献求助10
16分钟前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3229730
求助须知:如何正确求助?哪些是违规求助? 2877248
关于积分的说明 8198636
捐赠科研通 2544723
什么是DOI,文献DOI怎么找? 1374636
科研通“疑难数据库(出版商)”最低求助积分说明 647010
邀请新用户注册赠送积分活动 621836