Robust Multi-Model Visual Tracking With Distractor-Aware Template-Coupled Correlation Filters Joint Learning

计算机科学 判别式 人工智能 水准点(测量) 滤波器(信号处理) 背景(考古学) 眼动 模式识别(心理学) BitTorrent跟踪器 主动外观模型 计算机视觉 机器学习 图像(数学) 古生物学 大地测量学 生物 地理
作者
Hao-Yang Zhang,Guixi Liu,Yi Zhang,Zhaohui Hao
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:26: 1813-1828 被引量:4
标识
DOI:10.1109/tmm.2023.3289700
摘要

Existing correlation filter (CF) tracking methods are fragile for boundary effects, vague target information, and heuristic model updating, as these limitations degrade the detection ability of the learned filter. In response to that, this article embarks on basic CF learning and presents a novel distractor-aware template-coupled correlation filter (DATC-CF) by exploiting the spatial-temporal appearance context of the target, which aims at improving the discriminative ability of the learned filter against distractive background and the descriptive ability in adapting unexpected scenes. Specifically, the power of spatial context comes from a distractor-aware regularizer weighted by background distractors. By adaptively optimizing the weight of each distractor, our filter training can focus more on the critical distractors. The temporal context is represented by a dynamic template set, and we formulate a template-coupled regularizer that can make use of the commonality over all templates while maintaining a passive filter update under a multi-template learning scheme. DATC-CF integrates the two regularizers and is summarized as a multi-variable joint optimization problem where a filter ensemble can be learned. With DATC-CF, a multi-model tracking framework DATC_MM is developed by maximizing the posterior distribution over the learned filters. For robust tracking, we further apply high-confidence updating and establish a complementary distractor-aware color detector to restore the CF tracking failures. Finally, experiments on several large-scale benchmark datasets demonstrate the effectiveness of the proposed tracking methods against state-of-the-art trackers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
花花完成签到,获得积分10
刚刚
张杰完成签到,获得积分10
1秒前
wuye发布了新的文献求助10
1秒前
凹凸蔓发布了新的文献求助10
1秒前
erichohos发布了新的文献求助10
2秒前
3秒前
花花发布了新的文献求助10
3秒前
3秒前
3秒前
赘婿应助一二采纳,获得10
3秒前
元水云发布了新的文献求助10
4秒前
maya完成签到,获得积分10
5秒前
5秒前
在水一方应助Shelton采纳,获得10
7秒前
8秒前
英雷完成签到,获得积分10
8秒前
端庄的魔镜完成签到 ,获得积分10
8秒前
大约在冬季完成签到,获得积分10
8秒前
Gulu_发布了新的文献求助10
8秒前
10秒前
10秒前
CIXI发布了新的文献求助10
10秒前
LEE123发布了新的文献求助10
11秒前
火火发布了新的文献求助10
12秒前
1234567890l发布了新的文献求助10
12秒前
12秒前
13秒前
14秒前
拼搏的萧完成签到 ,获得积分10
15秒前
fei发布了新的文献求助20
16秒前
17秒前
CIXI完成签到,获得积分10
18秒前
邹醉蓝完成签到,获得积分10
19秒前
19秒前
zy发布了新的文献求助10
19秒前
zhong241发布了新的文献求助10
19秒前
香蕉觅云应助1234567890l采纳,获得10
20秒前
21秒前
充电宝应助啊哦呃噫呜吁采纳,获得10
21秒前
浮雨微清发布了新的文献求助10
22秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3469850
求助须知:如何正确求助?哪些是违规求助? 3063049
关于积分的说明 9081269
捐赠科研通 2753307
什么是DOI,文献DOI怎么找? 1510815
邀请新用户注册赠送积分活动 698084
科研通“疑难数据库(出版商)”最低求助积分说明 698028