Robust Multi-Model Visual Tracking With Distractor-Aware Template-Coupled Correlation Filters Joint Learning

计算机科学 判别式 人工智能 水准点(测量) 滤波器(信号处理) 背景(考古学) 眼动 模式识别(心理学) BitTorrent跟踪器 主动外观模型 计算机视觉 机器学习 图像(数学) 生物 古生物学 地理 大地测量学
作者
Hao-Yang Zhang,Guixi Liu,Yi Zhang,Zhaohui Hao
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:26: 1813-1828 被引量:4
标识
DOI:10.1109/tmm.2023.3289700
摘要

Existing correlation filter (CF) tracking methods are fragile for boundary effects, vague target information, and heuristic model updating, as these limitations degrade the detection ability of the learned filter. In response to that, this article embarks on basic CF learning and presents a novel distractor-aware template-coupled correlation filter (DATC-CF) by exploiting the spatial-temporal appearance context of the target, which aims at improving the discriminative ability of the learned filter against distractive background and the descriptive ability in adapting unexpected scenes. Specifically, the power of spatial context comes from a distractor-aware regularizer weighted by background distractors. By adaptively optimizing the weight of each distractor, our filter training can focus more on the critical distractors. The temporal context is represented by a dynamic template set, and we formulate a template-coupled regularizer that can make use of the commonality over all templates while maintaining a passive filter update under a multi-template learning scheme. DATC-CF integrates the two regularizers and is summarized as a multi-variable joint optimization problem where a filter ensemble can be learned. With DATC-CF, a multi-model tracking framework DATC_MM is developed by maximizing the posterior distribution over the learned filters. For robust tracking, we further apply high-confidence updating and establish a complementary distractor-aware color detector to restore the CF tracking failures. Finally, experiments on several large-scale benchmark datasets demonstrate the effectiveness of the proposed tracking methods against state-of-the-art trackers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zzz发布了新的文献求助10
刚刚
青寻完成签到,获得积分10
刚刚
迷你的雅霜完成签到,获得积分10
1秒前
2秒前
一心完成签到,获得积分10
3秒前
皮卡丘比特完成签到,获得积分10
3秒前
FashionBoy应助愤怒的山兰采纳,获得10
4秒前
不安青牛应助nice1025采纳,获得20
4秒前
4秒前
小蘑菇应助Hhh采纳,获得30
4秒前
anan发布了新的文献求助10
6秒前
慕青应助高大的砖家采纳,获得10
6秒前
tou完成签到,获得积分10
6秒前
6秒前
8秒前
memory发布了新的文献求助10
9秒前
在水一方应助炙热的书竹采纳,获得10
9秒前
咩咩咩咩发布了新的文献求助10
10秒前
11秒前
He发布了新的文献求助30
13秒前
muyi完成签到,获得积分10
14秒前
haoyunlai完成签到,获得积分10
15秒前
坦率的山菡完成签到,获得积分20
15秒前
16秒前
16秒前
bai应助红萌馆管家采纳,获得10
16秒前
16秒前
zoes完成签到 ,获得积分10
17秒前
可爱的函函应助阿xi霸采纳,获得10
18秒前
周杰完成签到,获得积分10
20秒前
64658应助亚南采纳,获得10
20秒前
lsfAZIBhydrogel完成签到,获得积分10
21秒前
21秒前
paixxxxx发布了新的文献求助30
22秒前
hudu完成签到,获得积分10
22秒前
jiujiu关注了科研通微信公众号
22秒前
22秒前
ning完成签到,获得积分10
22秒前
23秒前
上官若男应助凡仔采纳,获得10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
Founding Fathers The Shaping of America 500
Research Handbook on Law and Political Economy Second Edition 398
March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4558330
求助须知:如何正确求助?哪些是违规求助? 3985350
关于积分的说明 12338439
捐赠科研通 3655702
什么是DOI,文献DOI怎么找? 2013951
邀请新用户注册赠送积分活动 1048833
科研通“疑难数据库(出版商)”最低求助积分说明 937181