Robust Multi-Model Visual Tracking With Distractor-Aware Template-Coupled Correlation Filters Joint Learning

计算机科学 判别式 人工智能 水准点(测量) 滤波器(信号处理) 背景(考古学) 眼动 模式识别(心理学) BitTorrent跟踪器 主动外观模型 计算机视觉 机器学习 图像(数学) 古生物学 大地测量学 生物 地理
作者
Hao-Yang Zhang,Guixi Liu,Yi Zhang,Zhaohui Hao
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:26: 1813-1828 被引量:4
标识
DOI:10.1109/tmm.2023.3289700
摘要

Existing correlation filter (CF) tracking methods are fragile for boundary effects, vague target information, and heuristic model updating, as these limitations degrade the detection ability of the learned filter. In response to that, this article embarks on basic CF learning and presents a novel distractor-aware template-coupled correlation filter (DATC-CF) by exploiting the spatial-temporal appearance context of the target, which aims at improving the discriminative ability of the learned filter against distractive background and the descriptive ability in adapting unexpected scenes. Specifically, the power of spatial context comes from a distractor-aware regularizer weighted by background distractors. By adaptively optimizing the weight of each distractor, our filter training can focus more on the critical distractors. The temporal context is represented by a dynamic template set, and we formulate a template-coupled regularizer that can make use of the commonality over all templates while maintaining a passive filter update under a multi-template learning scheme. DATC-CF integrates the two regularizers and is summarized as a multi-variable joint optimization problem where a filter ensemble can be learned. With DATC-CF, a multi-model tracking framework DATC_MM is developed by maximizing the posterior distribution over the learned filters. For robust tracking, we further apply high-confidence updating and establish a complementary distractor-aware color detector to restore the CF tracking failures. Finally, experiments on several large-scale benchmark datasets demonstrate the effectiveness of the proposed tracking methods against state-of-the-art trackers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sun关闭了sun文献求助
1秒前
WHaha发布了新的文献求助10
1秒前
1秒前
1秒前
2秒前
Timing侠发布了新的文献求助10
2秒前
坦率的文龙完成签到,获得积分10
3秒前
快乐滑板发布了新的文献求助10
3秒前
3秒前
清爽绣连完成签到,获得积分10
4秒前
4秒前
5秒前
5秒前
情怀应助顾思凡采纳,获得10
5秒前
zaadasd发布了新的文献求助20
5秒前
玖玖完成签到,获得积分10
6秒前
6秒前
6秒前
7秒前
冬嘉完成签到,获得积分10
7秒前
Ava应助DADA采纳,获得10
7秒前
现代的访曼应助nandiaozhimu采纳,获得20
8秒前
8秒前
sakuraking完成签到,获得积分10
8秒前
123完成签到,获得积分10
8秒前
9秒前
9秒前
wangerer发布了新的文献求助10
9秒前
10秒前
qinqin发布了新的文献求助10
10秒前
10秒前
春天发布了新的文献求助10
11秒前
zhenya发布了新的文献求助20
11秒前
脑洞疼应助Lone采纳,获得10
11秒前
haoliu完成签到,获得积分10
11秒前
心灵美的石头完成签到,获得积分10
12秒前
想喝奶茶完成签到,获得积分10
12秒前
12秒前
13秒前
江屿发布了新的文献求助10
13秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961675
求助须知:如何正确求助?哪些是违规求助? 3507998
关于积分的说明 11139238
捐赠科研通 3240579
什么是DOI,文献DOI怎么找? 1791017
邀请新用户注册赠送积分活动 872696
科研通“疑难数据库(出版商)”最低求助积分说明 803326