Deep learning assisted high throughput screening of ionic liquid electrolytes for NRR and CO2RR

离子液体 电解质 溶解度 电导率 氧化还原 吞吐量 粘度 材料科学 化学 计算机科学 电极 无机化学 有机化学 催化作用 物理化学 无线 电信 复合材料
作者
Yingying Song,Yandong Guo,Junwu Chen,Menglei Yuan,Kun Dong
出处
期刊:Journal of environmental chemical engineering [Elsevier]
卷期号:11 (5): 110556-110556 被引量:12
标识
DOI:10.1016/j.jece.2023.110556
摘要

Nonaqueous ionic liquids (ILs) with high solubility of both N2 and CO2 have a greater potential to be used as electrolytes for nitrogen reduction reaction (NRR) and electrocatalytic CO2 reduction reaction (CO2RR) due to the reduced effects of hydrogen evolution reactions (HER) and the high conductivity as well as the low viscosity. However, conventional experimental methods for screening ILs electrolytes are time consuming and labor intensive. In this work, a deep learning-assisted ILs screening approach was investigated to find the ILs electrolytes in practical applications. About 40,000 experimental data were collected for six ILs properties including viscosity, conductivity, melting point, density, N2 solubility and CO2 solubility. Graph neural network (GNN) was used to predict the properties of ILs and exhibited superior performance compared to traditional machine learning models. In addition, the transfer learning (TL) approach was employed to enhance the model prediction on a small dataset. To achieve high-throughput screening, a virtual database was constructed with 2 million ILs structures. Taking the properties of [P6,6,6,14][eFAP], the IL with higher Faradaic conversion efficiency, as the input thresholds, we performed high throughput screening of the virtual dataset, obtained 141 ILs based on the Synthetic Complexity Score (SCScore), in which [B(CN)4]- ILs and [ClO4]- ILs accounted for 29.3% and 15.7%, respectively, and finally identified 8 ILs superior to [P6,6,6,14][eFAP] as ideal electrolytes materials for both NRR and CO2RR that had been reported to be synthesizable. This data-driven model can streamline electrolytes selection and design, accelerating the development of IL electrolytes for electrochemical systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Rr应助111采纳,获得10
1秒前
haha完成签到,获得积分10
2秒前
超级天磊完成签到,获得积分10
2秒前
3秒前
alalei发布了新的文献求助10
4秒前
浆糊完成签到 ,获得积分10
6秒前
DreamMaker给DreamMaker的求助进行了留言
7秒前
wh雨发布了新的文献求助10
7秒前
摸鱼仙人完成签到,获得积分10
7秒前
shouz完成签到,获得积分10
7秒前
迷人的天抒完成签到 ,获得积分10
8秒前
wink发布了新的文献求助10
8秒前
李冰玉完成签到,获得积分10
8秒前
10秒前
SONGYEZI完成签到,获得积分0
12秒前
lili发布了新的文献求助10
13秒前
13秒前
科研的小迷妹完成签到,获得积分10
13秒前
哭泣老头发布了新的文献求助20
14秒前
Colo完成签到,获得积分10
14秒前
14秒前
14秒前
15秒前
egret完成签到,获得积分10
16秒前
16秒前
17秒前
李李完成签到,获得积分10
17秒前
热爱完成签到,获得积分10
18秒前
米虫完成签到,获得积分10
18秒前
20秒前
nature发布了新的文献求助10
20秒前
Drcai发布了新的文献求助10
21秒前
xiaoy发布了新的文献求助10
21秒前
21秒前
moli0424发布了新的文献求助10
22秒前
。。。完成签到,获得积分10
22秒前
22秒前
lili完成签到,获得积分10
22秒前
思源应助wink采纳,获得10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5295297
求助须知:如何正确求助?哪些是违规求助? 4444855
关于积分的说明 13834820
捐赠科研通 4329178
什么是DOI,文献DOI怎么找? 2376556
邀请新用户注册赠送积分活动 1371823
关于科研通互助平台的介绍 1337080