Deep learning assisted high throughput screening of ionic liquid electrolytes for NRR and CO2RR

离子液体 电解质 溶解度 电导率 氧化还原 吞吐量 粘度 材料科学 化学 计算机科学 电极 无机化学 有机化学 催化作用 物理化学 无线 电信 复合材料
作者
Yingying Song,Yandong Guo,Junwu Chen,Menglei Yuan,Kun Dong
出处
期刊:Journal of environmental chemical engineering [Elsevier]
卷期号:11 (5): 110556-110556 被引量:12
标识
DOI:10.1016/j.jece.2023.110556
摘要

Nonaqueous ionic liquids (ILs) with high solubility of both N2 and CO2 have a greater potential to be used as electrolytes for nitrogen reduction reaction (NRR) and electrocatalytic CO2 reduction reaction (CO2RR) due to the reduced effects of hydrogen evolution reactions (HER) and the high conductivity as well as the low viscosity. However, conventional experimental methods for screening ILs electrolytes are time consuming and labor intensive. In this work, a deep learning-assisted ILs screening approach was investigated to find the ILs electrolytes in practical applications. About 40,000 experimental data were collected for six ILs properties including viscosity, conductivity, melting point, density, N2 solubility and CO2 solubility. Graph neural network (GNN) was used to predict the properties of ILs and exhibited superior performance compared to traditional machine learning models. In addition, the transfer learning (TL) approach was employed to enhance the model prediction on a small dataset. To achieve high-throughput screening, a virtual database was constructed with 2 million ILs structures. Taking the properties of [P6,6,6,14][eFAP], the IL with higher Faradaic conversion efficiency, as the input thresholds, we performed high throughput screening of the virtual dataset, obtained 141 ILs based on the Synthetic Complexity Score (SCScore), in which [B(CN)4]- ILs and [ClO4]- ILs accounted for 29.3% and 15.7%, respectively, and finally identified 8 ILs superior to [P6,6,6,14][eFAP] as ideal electrolytes materials for both NRR and CO2RR that had been reported to be synthesizable. This data-driven model can streamline electrolytes selection and design, accelerating the development of IL electrolytes for electrochemical systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
犹豫怜南发布了新的文献求助20
2秒前
4秒前
4秒前
4秒前
5秒前
5秒前
HITvagary完成签到,获得积分0
6秒前
不敢装睡完成签到,获得积分10
6秒前
7秒前
聂落雁完成签到,获得积分10
7秒前
芋泥丸丸发布了新的文献求助10
7秒前
xuejie驳回了慕青应助
7秒前
ZSC发布了新的文献求助10
8秒前
8秒前
跳跃发布了新的文献求助10
9秒前
追寻梦之发布了新的文献求助10
9秒前
9秒前
10秒前
小庄完成签到 ,获得积分10
10秒前
大胆的弼完成签到,获得积分10
11秒前
11秒前
yiyi发布了新的文献求助10
11秒前
ruru发布了新的文献求助10
11秒前
12秒前
可爱的函函应助辉腾采纳,获得10
12秒前
12秒前
王蕊发布了新的文献求助10
13秒前
13秒前
lxgz发布了新的文献求助10
13秒前
13秒前
Ava应助dd采纳,获得10
13秒前
bamboo应助细心怀亦采纳,获得20
13秒前
14秒前
14秒前
星辰大海应助TaoTaooooII采纳,获得10
14秒前
su123发布了新的文献求助10
14秒前
lawang发布了新的文献求助10
15秒前
zhonglv7应助lin采纳,获得10
15秒前
elang发布了新的文献求助10
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5653296
求助须知:如何正确求助?哪些是违规求助? 4789685
关于积分的说明 15063648
捐赠科研通 4811856
什么是DOI,文献DOI怎么找? 2574143
邀请新用户注册赠送积分活动 1529815
关于科研通互助平台的介绍 1488524