亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep learning assisted high throughput screening of ionic liquid electrolytes for NRR and CO2RR

离子液体 电解质 溶解度 电导率 氧化还原 吞吐量 粘度 材料科学 化学 计算机科学 电极 无机化学 有机化学 催化作用 物理化学 无线 电信 复合材料
作者
Yingying Song,Yandong Guo,Junwu Chen,Menglei Yuan,Kun Dong
出处
期刊:Journal of environmental chemical engineering [Elsevier]
卷期号:11 (5): 110556-110556 被引量:12
标识
DOI:10.1016/j.jece.2023.110556
摘要

Nonaqueous ionic liquids (ILs) with high solubility of both N2 and CO2 have a greater potential to be used as electrolytes for nitrogen reduction reaction (NRR) and electrocatalytic CO2 reduction reaction (CO2RR) due to the reduced effects of hydrogen evolution reactions (HER) and the high conductivity as well as the low viscosity. However, conventional experimental methods for screening ILs electrolytes are time consuming and labor intensive. In this work, a deep learning-assisted ILs screening approach was investigated to find the ILs electrolytes in practical applications. About 40,000 experimental data were collected for six ILs properties including viscosity, conductivity, melting point, density, N2 solubility and CO2 solubility. Graph neural network (GNN) was used to predict the properties of ILs and exhibited superior performance compared to traditional machine learning models. In addition, the transfer learning (TL) approach was employed to enhance the model prediction on a small dataset. To achieve high-throughput screening, a virtual database was constructed with 2 million ILs structures. Taking the properties of [P6,6,6,14][eFAP], the IL with higher Faradaic conversion efficiency, as the input thresholds, we performed high throughput screening of the virtual dataset, obtained 141 ILs based on the Synthetic Complexity Score (SCScore), in which [B(CN)4]- ILs and [ClO4]- ILs accounted for 29.3% and 15.7%, respectively, and finally identified 8 ILs superior to [P6,6,6,14][eFAP] as ideal electrolytes materials for both NRR and CO2RR that had been reported to be synthesizable. This data-driven model can streamline electrolytes selection and design, accelerating the development of IL electrolytes for electrochemical systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
清晨仪仪发布了新的文献求助10
21秒前
麻辣香锅发布了新的文献求助10
36秒前
科研通AI6应助CC采纳,获得10
1分钟前
李李爱种花完成签到 ,获得积分10
1分钟前
1分钟前
查莉发布了新的文献求助10
1分钟前
1分钟前
科研通AI6应助麻辣香锅采纳,获得10
1分钟前
1分钟前
1分钟前
小萌兽完成签到 ,获得积分10
2分钟前
ysy完成签到,获得积分10
2分钟前
3分钟前
3分钟前
3分钟前
直率的青寒完成签到,获得积分10
3分钟前
宝石完成签到,获得积分10
4分钟前
null应助ceeray23采纳,获得20
4分钟前
4分钟前
ceeray23发布了新的文献求助20
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
4分钟前
羞涩的傲菡完成签到,获得积分10
5分钟前
5分钟前
nssanc完成签到,获得积分10
5分钟前
linlinlin发布了新的文献求助10
5分钟前
量子星尘发布了新的文献求助10
5分钟前
FashionBoy应助linlinlin采纳,获得10
6分钟前
十一完成签到 ,获得积分10
6分钟前
QQWRV完成签到,获得积分10
6分钟前
6分钟前
CC发布了新的文献求助10
7分钟前
ceeray23发布了新的文献求助20
7分钟前
威武千青发布了新的文献求助20
7分钟前
7分钟前
Mrzrgh完成签到,获得积分10
8分钟前
钱邦国完成签到 ,获得积分10
8分钟前
小乐儿~完成签到,获得积分10
8分钟前
闪闪关注了科研通微信公众号
9分钟前
科研通AI6应助和谐小鸭子采纳,获得10
9分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 550
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5622233
求助须知:如何正确求助?哪些是违规求助? 4707262
关于积分的说明 14938986
捐赠科研通 4769501
什么是DOI,文献DOI怎么找? 2552232
邀请新用户注册赠送积分活动 1514348
关于科研通互助平台的介绍 1475041