Quantum advantage in microwave quantum radar

物理 量子 微波食品加热 雷达 量子力学 计算机科学 电信
作者
Réouven Assouly,Rémy Dassonneville,Théau Peronnin,Audrey Bienfait,Benjamin Huard
出处
期刊:Nature Physics [Nature Portfolio]
卷期号:19 (10): 1418-1422 被引量:54
标识
DOI:10.1038/s41567-023-02113-4
摘要

While quantum entanglement can enhance the performance of several technologies such as computing, sensing and cryptography, its widespread use is hindered by its sensitivity to noise and losses. Interestingly, even when entanglement has been destroyed, some tasks still exhibit a quantum advantage $Q$, defined by a $Q$-time speedup, over any classical strategies. A prominent example is the quantum radar, which enhances the detection of the presence of a target in noisy surroundings. To beat all classical strategies, Lloyd proposed to use a probe initially entangled with an idler that can be recombined and measured with the reflected probe. Observing any quantum advantage requires exploiting the quantum correlations between the probe and the idler. It involves their joint measurement or at least adapting the idler detection to the outcome of the probe measurement. In addition to successful demonstrations of such quantum illumination protocols at optical frequencies, the proposal of a microwave radar, closer to conventional radars, gathered a lot of interest. However, previous microwave implementations have not demonstrated any quantum advantage as probe and idler were always measured independently. In this work, we implement a joint measurement using a superconducting circuit and demonstrate a quantum advantage $Q>1$ for microwave radar. Storing the idler mitigates the detrimental impact of microwave loss on the quantum advantage, and the purity of the initial entangled state emerges as the next limit. While the experiment is a proof-of-principle performed inside a dilution refrigerator, it exhibits some of the inherent difficulties in implementing quantum radars such as the limited range of parameters where a quantum advantage can be observed or the requirement for very low probe and idler temperatures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
mengshang完成签到,获得积分10
3秒前
酷波er应助bb采纳,获得10
3秒前
PG完成签到,获得积分10
3秒前
李雪瑞发布了新的文献求助10
4秒前
传奇3应助KHZhang采纳,获得10
4秒前
上官若男应助KHZhang采纳,获得10
4秒前
Owen应助KHZhang采纳,获得10
4秒前
外向渊思完成签到 ,获得积分10
5秒前
hynni完成签到,获得积分10
5秒前
一条鱼叫弗里登完成签到 ,获得积分10
5秒前
三分糖发布了新的文献求助10
6秒前
wanci应助科研通管家采纳,获得10
7秒前
领导范儿应助科研通管家采纳,获得10
7秒前
英俊的铭应助科研通管家采纳,获得10
7秒前
Orange应助科研通管家采纳,获得10
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
852应助科研通管家采纳,获得30
7秒前
科目三应助科研通管家采纳,获得10
7秒前
8秒前
8秒前
充电宝应助科研通管家采纳,获得10
8秒前
9秒前
等待的晓亦完成签到 ,获得积分10
9秒前
坚强的鸡翅完成签到,获得积分10
10秒前
浮游应助通通真行采纳,获得10
11秒前
11秒前
一水合羟基磷酸钙完成签到,获得积分10
11秒前
Akim应助geoman采纳,获得10
11秒前
11秒前
疯子不风完成签到,获得积分10
12秒前
共享精神应助从容以山采纳,获得10
13秒前
曹颖完成签到,获得积分10
14秒前
xiao刘发布了新的文献求助10
15秒前
Simpson完成签到 ,获得积分0
15秒前
单薄黑米发布了新的文献求助10
16秒前
16秒前
shinble发布了新的文献求助10
16秒前
geoman完成签到,获得积分10
18秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Learning and Motivation in the Classroom 500
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5225925
求助须知:如何正确求助?哪些是违规求助? 4397578
关于积分的说明 13686733
捐赠科研通 4262055
什么是DOI,文献DOI怎么找? 2338915
邀请新用户注册赠送积分活动 1336294
关于科研通互助平台的介绍 1292263