已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Mul-DesLSTM: An integrative multi-time granularity deep learning prediction method for urban rail transit short-term passenger flow

粒度 计算机科学 残余物 流量(数学) 均方误差 数据挖掘 城市轨道交通 过程(计算) 期限(时间) 实时计算 算法 人工智能 统计 数学 物理 操作系统 工程类 土木工程 量子力学 几何学
作者
Wenbo Lu,Yong Zhang,Peikun Li,Ting Wang
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:125: 106741-106741 被引量:11
标识
DOI:10.1016/j.engappai.2023.106741
摘要

It is critical for the management and control of urban rail transit (URT) to be able to predict passenger flow accurately and in real time. Considering that the high-resolution data aggregated by the automatic fare collection (AFC) system is wasted, this paper analyzes the problem of applying a multi-time granularity passenger flow data fusion forecasting process. First, we examine the challenge of constructing a dataset of passenger flow data with different time granularities. Thus, an algorithm is proposed for selecting passenger flow datasets with multi-time granularity. Furthermore, a multi-time granularity dense residual network (Mul-DesLSTM) with a dense residual structure and LSTM (long short-term memory) as the predictor is constructed, inspired by a residual network. Using Mul-DesLSTM, finer-grained passenger flow features can be fused layer by layer while maintaining the accuracy of traditional single-granularity passenger flow predictions. Lastly, Mul-DesLSTM is applied to the URT system of Shanghai, China, and compared with baselines. As a result, the proposed Mul-DesLSTM outperforms the baselines with LSTM as a predictor and state-of-the-art model. When the predicted time granularity is 30 min, compared to the single-time granularity LSTM network, the mean absolute error, root mean square error, and symmetric mean absolute percentage error can be reduced by 51%, 63%, and 15%, respectively. The results can serve as a reference and basis for the operation and management of URT systems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
随机科研完成签到,获得积分10
1秒前
烟花应助小盖采纳,获得10
1秒前
MJH123456发布了新的文献求助10
3秒前
大神瓜发布了新的文献求助10
4秒前
5秒前
5秒前
张张发布了新的文献求助10
5秒前
是菜团子呀完成签到 ,获得积分10
6秒前
css1997完成签到 ,获得积分10
7秒前
9秒前
曾经易烟完成签到,获得积分20
9秒前
11秒前
11秒前
科目三应助张张采纳,获得10
12秒前
wam关闭了wam文献求助
12秒前
小盖发布了新的文献求助10
14秒前
15秒前
15秒前
科研通AI6应助喵晓懒采纳,获得10
15秒前
科研小巴发布了新的文献求助10
16秒前
BruceZh完成签到,获得积分10
18秒前
小蘑菇完成签到,获得积分10
18秒前
小盖完成签到,获得积分10
19秒前
务实的千风完成签到,获得积分10
21秒前
hxt发布了新的文献求助50
21秒前
sj发布了新的文献求助10
21秒前
pual完成签到,获得积分10
23秒前
易夜雨居完成签到 ,获得积分10
23秒前
昌莆完成签到 ,获得积分10
25秒前
健忘浩宇完成签到,获得积分10
26秒前
科研通AI6应助sensen采纳,获得10
28秒前
Criminology34应助务实的千风采纳,获得10
30秒前
31秒前
31秒前
msn00完成签到 ,获得积分10
34秒前
叶子完成签到 ,获得积分10
35秒前
35秒前
39秒前
幸运星完成签到 ,获得积分10
40秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5627693
求助须知:如何正确求助?哪些是违规求助? 4714530
关于积分的说明 14963003
捐赠科研通 4785420
什么是DOI,文献DOI怎么找? 2555122
邀请新用户注册赠送积分活动 1516460
关于科研通互助平台的介绍 1476875