Comparison of computed tomography and dual-energy X-ray absorptiometry in the evaluation of body composition in patients with obesity

霍恩斯菲尔德秤 双能X射线吸收法 医学 核医学 双重能量 计算机断层摄影术 协议限制 瘦体质量 放射科 体重 骨矿物 内科学 骨质疏松症
作者
Fiorella Palmas,Andreea Ciudin,Raúl Rodríguez Guerra,Daniel Eiroa,Carina Espinet,Núria Rosón,R. Burgos,Rafael Simó
出处
期刊:Frontiers in Endocrinology [Frontiers Media]
卷期号:14 被引量:8
标识
DOI:10.3389/fendo.2023.1161116
摘要

Objective a) To evaluate the accuracy of the pre-existing equations (based on cm2 provided by CT images), to estimate in kilograms (Kg) the body composition (BC) in patients with obesity (PwO), by comparison with Dual-energy X-ray absorptiometry (DXA). b) To evaluate the accuracy of a new approach (based on both cm2 and Hounsfield Unit parameters provided by CT images), using an automatic software and artificial intelligence to estimate the BC in PwO, by comparison with DXA. Methods Single-centre cross-sectional study including consecutive PwO, matched by gender with subjects with normal BMI. All the subjects underwent BC assessment by Dual-energy X-ray absorptiometry (DXA) and skeletal-CT at L3 vertebrae. CT images were processed using FocusedON-BC software. Three different models were tested. Model 1 and 2, based on the already existing equations, estimate the BC in Kg based on the tissue area (cm2) in the CT images. Model 3, developed in this study, includes as additional variables, the tissue percentage and its average Hounsfield unit. Results 70 subjects (46 PwO and 24 with normal BMI) were recruited. Significant correlations for BC were obtained between the three models and DXA. Model 3 showed the strongest correlation with DXA (r= 0.926, CI95% [0.835-0.968], p<0.001) as well as the best agreement based on Bland – Altman plots. Conclusion This is the first study showing that the BC assessment based on skeletal CT images analyzed by automatic software coupled with artificial intelligence, is accurate in PwO, by comparison with DXA. Furthermore, we propose a new equation that estimates both the tissue quantity and quality, that showed higher accuracy compared with those currently used, both in PwO and subjects with normal BMI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
诚心谷南完成签到,获得积分10
刚刚
1秒前
对手完成签到 ,获得积分10
3秒前
ES完成签到 ,获得积分10
5秒前
5秒前
善学以致用应助无限秋天采纳,获得10
7秒前
孟惜儿完成签到,获得积分10
8秒前
8秒前
coco完成签到,获得积分10
9秒前
lucia5354完成签到,获得积分10
9秒前
Even_YE完成签到,获得积分10
10秒前
小蘑菇应助19111867526采纳,获得10
13秒前
十一苗发布了新的文献求助10
14秒前
kmssh完成签到,获得积分10
15秒前
佳期如梦完成签到 ,获得积分10
16秒前
17秒前
XIAOLI应助hyhy采纳,获得10
17秒前
HalfGumps完成签到,获得积分10
19秒前
无花果应助甜甜太阳采纳,获得10
19秒前
阳光土豆完成签到,获得积分20
20秒前
浅斟低唱发布了新的文献求助10
20秒前
小二郎应助端庄的正豪采纳,获得10
21秒前
21秒前
科研通AI2S应助Oscar采纳,获得10
21秒前
bkagyin应助无限秋天采纳,获得10
22秒前
22秒前
liuguyue完成签到,获得积分10
22秒前
19111867526发布了新的文献求助10
26秒前
LingYing完成签到 ,获得积分10
27秒前
liuguyue发布了新的文献求助10
27秒前
30秒前
31秒前
树叶有专攻完成签到,获得积分10
31秒前
小蘑菇应助shenzhou9采纳,获得10
32秒前
研友_ZAyqJZ发布了新的文献求助10
32秒前
33秒前
34秒前
汉堡包应助liuguyue采纳,获得10
34秒前
35秒前
周丫丫发布了新的文献求助10
36秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
Unusual formation of 4-diazo-3-nitriminopyrazoles upon acid nitration of pyrazolo[3,4-d][1,2,3]triazoles 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3671635
求助须知:如何正确求助?哪些是违规求助? 3228335
关于积分的说明 9779690
捐赠科研通 2938645
什么是DOI,文献DOI怎么找? 1610206
邀请新用户注册赠送积分活动 760547
科研通“疑难数据库(出版商)”最低求助积分说明 736093