Accurate prediction of global-density-dependent range-separation parameters based on machine learning

从头算 航程(航空) 统计物理学 密度泛函理论 微扰理论(量子力学) 系列(地层学) 计算物理学 可转让性 化学 算法 物理 数学 计算化学 材料科学 计算机科学 量子力学 统计 古生物学 罗伊特 复合材料 生物
作者
Corentin Villot,Tong Huang,Ka Un Lao
出处
期刊:Journal of Chemical Physics [American Institute of Physics]
卷期号:159 (4) 被引量:1
标识
DOI:10.1063/5.0157340
摘要

In this work, we develop an accurate and efficient XGBoost machine learning model for predicting the global-density-dependent range-separation parameter, ωGDD, for long-range corrected functional (LRC)-ωPBE. This ωGDDML model has been built using a wide range of systems (11 466 complexes, ten different elements, and up to 139 heavy atoms) with fingerprints for the local atomic environment and histograms of distances for the long-range atomic correlation for mapping the quantum mechanical range-separation values. The promising performance on the testing set with 7046 complexes shows a mean absolute error of 0.001 117 a0-1 and only five systems (0.07%) with an absolute error larger than 0.01 a0-1, which indicates the good transferability of our ωGDDML model. In addition, the only required input to obtain ωGDDML is the Cartesian coordinates without electronic structure calculations, thereby enabling rapid predictions. LRC-ωPBE(ωGDDML) is used to predict polarizabilities for a series of oligomers, where polarizabilities are sensitive to the asymptotic density decay and are crucial in a variety of applications, including the calculations of dispersion corrections and refractive index, and surpasses the performance of all other popular density functionals except for the non-tuned LRC-ωPBE. Finally, LRC-ωPBE (ωGDDML) combined with (extended) symmetry-adapted perturbation theory is used in calculating noncovalent interactions to further show that the traditional ab initio system-specific tuning procedure can be bypassed. The present study not only provides an accurate and efficient way to determine the range-separation parameter for LRC-ωPBE but also shows the synergistic benefits of fusing the power of physically inspired density functional LRC-ωPBE and the data-driven ωGDDML model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jasper应助panting采纳,获得10
1秒前
1秒前
1秒前
卜大大完成签到,获得积分20
1秒前
1秒前
2秒前
CipherSage应助xzh采纳,获得10
3秒前
FashionBoy应助Wakey采纳,获得10
3秒前
3秒前
少华完成签到,获得积分10
4秒前
郭mm发布了新的文献求助10
4秒前
小黑完成签到,获得积分10
5秒前
粒粒完成签到,获得积分10
5秒前
yingme完成签到,获得积分10
5秒前
材料若饥完成签到,获得积分10
5秒前
6秒前
6秒前
7秒前
7秒前
orixero应助lpp32采纳,获得50
7秒前
8秒前
9秒前
10秒前
lyl完成签到,获得积分10
10秒前
anonym11完成签到,获得积分10
11秒前
12秒前
up发布了新的文献求助10
12秒前
13秒前
13秒前
shao发布了新的文献求助300
14秒前
15秒前
果实发布了新的文献求助10
16秒前
16秒前
xzh发布了新的文献求助10
17秒前
宓天问发布了新的文献求助10
18秒前
大白不白发布了新的文献求助10
19秒前
20秒前
20秒前
代代完成签到 ,获得积分10
21秒前
21秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960936
求助须知:如何正确求助?哪些是违规求助? 3507194
关于积分的说明 11134321
捐赠科研通 3239560
什么是DOI,文献DOI怎么找? 1790248
邀请新用户注册赠送积分活动 872244
科研通“疑难数据库(出版商)”最低求助积分说明 803149