从头算
航程(航空)
统计物理学
密度泛函理论
微扰理论(量子力学)
系列(地层学)
计算物理学
可转让性
化学
算法
物理
数学
计算化学
材料科学
计算机科学
量子力学
统计
古生物学
罗伊特
复合材料
生物
作者
Corentin Villot,Tong Huang,Ka Un Lao
摘要
In this work, we develop an accurate and efficient XGBoost machine learning model for predicting the global-density-dependent range-separation parameter, ωGDD, for long-range corrected functional (LRC)-ωPBE. This ωGDDML model has been built using a wide range of systems (11 466 complexes, ten different elements, and up to 139 heavy atoms) with fingerprints for the local atomic environment and histograms of distances for the long-range atomic correlation for mapping the quantum mechanical range-separation values. The promising performance on the testing set with 7046 complexes shows a mean absolute error of 0.001 117 a0-1 and only five systems (0.07%) with an absolute error larger than 0.01 a0-1, which indicates the good transferability of our ωGDDML model. In addition, the only required input to obtain ωGDDML is the Cartesian coordinates without electronic structure calculations, thereby enabling rapid predictions. LRC-ωPBE(ωGDDML) is used to predict polarizabilities for a series of oligomers, where polarizabilities are sensitive to the asymptotic density decay and are crucial in a variety of applications, including the calculations of dispersion corrections and refractive index, and surpasses the performance of all other popular density functionals except for the non-tuned LRC-ωPBE. Finally, LRC-ωPBE (ωGDDML) combined with (extended) symmetry-adapted perturbation theory is used in calculating noncovalent interactions to further show that the traditional ab initio system-specific tuning procedure can be bypassed. The present study not only provides an accurate and efficient way to determine the range-separation parameter for LRC-ωPBE but also shows the synergistic benefits of fusing the power of physically inspired density functional LRC-ωPBE and the data-driven ωGDDML model.
科研通智能强力驱动
Strongly Powered by AbleSci AI