A Lightweight Transformer Network for Hyperspectral Image Classification

计算机科学 过度拟合 变压器 高光谱成像 卷积神经网络 特征提取 人工智能 计算 像素 内存占用 模式识别(心理学) 人工神经网络 算法 操作系统 物理 量子力学 电压
作者
Xuming Zhang,Yuanchao Su,Lianru Gao,Lorenzo Bruzzone,Xingfa Gu,Qingjiu Tian
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-17 被引量:49
标识
DOI:10.1109/tgrs.2023.3297858
摘要

Transformer is a powerful tool for capturing long-range dependencies and has shown impressive performance in hyperspectral image (HSI) classification. However, such power comes with a heavy memory footprint and huge computation burden. In this article, we propose two types of lightweight self-attention modules (a channel lightweight multihead self-attention (CLMSA) module and a position lightweight multihead self-attention (PLMSA) module) to reduce both memory and computation while associating each pixel or channel with global information. Moreover, we discover that transformers are ineffective in explicitly extracting local and multiscale features due to the fixed input size and tend to overfit when dealing with a small number of training samples. Therefore, a lightweight transformer (LiT) network, built with the proposed lightweight self-attention modules, is presented. LiT adopts convolutional blocks to explicitly extract local information in early layers and employs transformers to capture long-range dependencies in deep layers. Furthermore, we design a controlled multiclass stratified (CMS) sampling strategy to generate appropriately sized input data, ensure balanced sampling, and reduce the overlap of feature extraction regions between training and test samples. With appropriate training data, convolutional tokenization, and LiTs, LiT mitigates overfitting and enjoys both high computational efficiency and good performance. Experimental results on several HSI datasets verify the effectiveness of our design.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李超强发布了新的文献求助10
刚刚
刚刚
酷狗小熊发布了新的文献求助10
1秒前
月半完成签到,获得积分10
1秒前
2秒前
qyccy完成签到,获得积分10
2秒前
打打应助MYLCX采纳,获得10
2秒前
2秒前
赘婿应助钱多多采纳,获得10
2秒前
dahua发布了新的文献求助10
2秒前
乔娜完成签到,获得积分10
2秒前
科研通AI6应助momo采纳,获得10
3秒前
碝磩完成签到,获得积分10
3秒前
啦啦啦啦啦完成签到,获得积分20
3秒前
3秒前
好好学习完成签到 ,获得积分10
3秒前
3秒前
子车茗应助白开水采纳,获得30
4秒前
啧啧完成签到,获得积分10
4秒前
4秒前
4秒前
5秒前
ihtw发布了新的文献求助10
5秒前
斯文败类应助turbohero采纳,获得10
5秒前
石头发布了新的文献求助10
5秒前
YY完成签到,获得积分10
6秒前
6秒前
6秒前
7秒前
科研通AI6应助lin采纳,获得30
7秒前
bkagyin应助超帅凡阳采纳,获得10
7秒前
7秒前
8秒前
8秒前
大模型应助喵喵采纳,获得10
8秒前
小马甲应助天线宝宝采纳,获得10
9秒前
Buduan完成签到,获得积分10
9秒前
nightgaunt发布了新的文献求助10
9秒前
草莓雪酪完成签到 ,获得积分10
9秒前
ZC发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Limits of Participatory Action Research: When Does Participatory “Action” Alliance Become Problematic, and How Can You Tell? 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5545851
求助须知:如何正确求助?哪些是违规求助? 4631846
关于积分的说明 14622939
捐赠科研通 4573564
什么是DOI,文献DOI怎么找? 2507609
邀请新用户注册赠送积分活动 1484354
关于科研通互助平台的介绍 1455594