软骨发生
细胞外基质
干细胞
细胞外
细胞生物学
财产(哲学)
化学
生物物理学
生物
认识论
哲学
作者
Junmin Lee,Oju Jeon,Jung−Hyuk Koh,Hanjun Kim,Sang Jin Lee,Yangzhi Zhu,JiHyeon Song,Yeji Lee,Rohollah Nasiri,KangJu Lee,Praveen Bandaru,Hyun‐Jong Cho,Shiming Zhang,Natan R. Barros,Samad Ahadian,Heemin Kang,Mehmet R. Dokmeci,Joanna Lee,Dino Di Carlo,Eben Alsberg,Ali Khademhosseini
出处
期刊:Matter
[Elsevier]
日期:2023-02-01
卷期号:6 (2): 475-492
被引量:1
标识
DOI:10.1016/j.matt.2022.11.008
摘要
Summary
Within the complex microarchitecture of native cartilage tissue, the micromechanical properties of pericellular and extracellular matrices (PCM and ECM) potentially play important roles in developmental, physiological, and pathological processes. Here, we report a unique biomaterial-based engineering strategy to create cartilage-tissue equivalents possessing PCM-ECM microarchitecture of native cartilage, where human mesenchymal stem cell (hMSC)-laden soft microgels representing PCM are encapsulated in stiff hydrogels representing ECM. Mechanical property mismatches between soft PCM and stiff ECM under cyclic compression regulates hMSC proliferation and chondrogenesis. High PCM-ECM mechanical mismatch (softer PCM) and the presence of PCM degradation under cyclic compression individually or synergistically direct hMSC articular chondrogenesis through the proliferation-associated protein kinase C signaling pathway, whereas low PCM-ECM mechanical mismatch (stiffer PCM) is solely responsible for hMSC hypertrophic chondrogenesis through the yes-associated protein signaling pathway. Our findings highlight PCM-ECM mechanical property mismatch as a critical design cue under dynamic compression for hMSC-based cartilage repair.
科研通智能强力驱动
Strongly Powered by AbleSci AI