分形
分形维数
网络的分形维数
分形景观
关联维数
维数(图论)
数学
缩放比例
几何学
各向同性
欧几里德几何
分形分析
空间分析
统计物理学
数学分析
纯数学
统计
物理
量子力学
作者
Zong-Guo Xia,Keith Clarke
出处
期刊:Routledge eBooks
[Informa]
日期:2023-01-06
卷期号:: 309-360
被引量:7
标识
DOI:10.1201/9780203740170-16
摘要
This chapter focuses on the fractal approach to the scaling phenomena of spatial data. It introduces some of the most basic concepts of fractal geometry and describes some of the commonly used algorithms for fractal analysis. Two important types of dimension are commonly used in fractal research: the topological dimension and the fractional dimension. The topological dimension is always an integer and coincides with the intuitive dimension in Euclidean geometry. Malinvemo evaluated the performance of a fractal model and an autoregressive model for describing sea floor topography. Both models appeared to describe the data fairly well. The fractal model gave a superior fit to the autocorrelation for small lags and to the general trend of the variance of the increments. The "Poisson-Brown" primary model has isotropic increments and satisfies many of the theoretical abstractions from actual observations of natural terrains.
科研通智能强力驱动
Strongly Powered by AbleSci AI