Structural Attention Graph Neural Network for Diagnosis and Prediction of COVID-19 Severity

计算机科学 工作量 图形 2019年冠状病毒病(COVID-19) 回归 人工智能 工作流程 人工神经网络 模式识别(心理学) 数据挖掘 机器学习 疾病 医学 理论计算机科学 病理 数学 统计 数据库 操作系统 传染病(医学专业)
作者
Yanbei Liu,Henan Li,Tao Luo,Changqing Zhang,Zhitao Xiao,Ying Wei,Yaozong Gao,Feng Shi,Fei Shan,Dinggang Shen
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:42 (2): 557-567 被引量:14
标识
DOI:10.1109/tmi.2022.3226575
摘要

With rapid worldwide spread of Coronavirus Disease 2019 (COVID-19), jointly identifying severe COVID-19 cases from mild ones and predicting the conversion time (from mild to severe) is essential to optimize the workflow and reduce the clinician's workload. In this study, we propose a novel framework for COVID-19 diagnosis, termed as Structural Attention Graph Neural Network (SAGNN), which can combine the multi-source information including features extracted from chest CT, latent lung structural distribution, and non-imaging patient information to conduct diagnosis of COVID-19 severity and predict the conversion time from mild to severe. Specifically, we first construct a graph to incorporate structural information of the lung and adopt graph attention network to iteratively update representations of lung segments. To distinguish different infection degrees of left and right lungs, we further introduce a structural attention mechanism. Finally, we introduce demographic information and develop a multi-task learning framework to jointly perform both tasks of classification and regression. Experiments are conducted on a real dataset with 1687 chest CT scans, which includes 1328 mild cases and 359 severe cases. Experimental results show that our method achieves the best classification (e.g., 86.86% in terms of Area Under Curve) and regression (e.g., 0.58 in terms of Correlation Coefficient) performance, compared with other comparison methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CipherSage应助知性的雅彤采纳,获得10
1秒前
SciGPT应助嗯呢采纳,获得10
1秒前
徒弟的师傅完成签到,获得积分10
1秒前
Orange应助健忘的寒荷采纳,获得10
1秒前
2秒前
3秒前
晁子枫发布了新的文献求助10
3秒前
3秒前
3秒前
夜半芜凉发布了新的文献求助10
4秒前
李健的小迷弟应助sadd采纳,获得10
5秒前
科研白发布了新的文献求助10
5秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
务实的惜寒完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
张志迪发布了新的文献求助10
7秒前
zenzi发布了新的文献求助10
7秒前
随缘来一个吧完成签到 ,获得积分10
7秒前
7秒前
7秒前
和谐碧琴发布了新的文献求助10
8秒前
优雅盼海完成签到,获得积分10
9秒前
9秒前
悟空发布了新的文献求助30
10秒前
Jared应助科研通管家采纳,获得10
10秒前
10秒前
asd应助科研通管家采纳,获得30
10秒前
小马甲应助科研通管家采纳,获得10
10秒前
斯文败类应助科研通管家采纳,获得10
10秒前
10秒前
tiptip应助科研通管家采纳,获得10
10秒前
打打应助科研通管家采纳,获得10
10秒前
脑洞疼应助科研通管家采纳,获得10
10秒前
斯文败类应助科研通管家采纳,获得30
11秒前
爆米花应助科研通管家采纳,获得10
11秒前
zgrmws应助科研通管家采纳,获得10
11秒前
FashionBoy应助科研通管家采纳,获得10
11秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667047
求助须知:如何正确求助?哪些是违规求助? 4883873
关于积分的说明 15118527
捐赠科研通 4825937
什么是DOI,文献DOI怎么找? 2583643
邀请新用户注册赠送积分活动 1537807
关于科研通互助平台的介绍 1496002