Structural Attention Graph Neural Network for Diagnosis and Prediction of COVID-19 Severity

计算机科学 工作量 图形 2019年冠状病毒病(COVID-19) 回归 人工智能 工作流程 人工神经网络 模式识别(心理学) 数据挖掘 机器学习 疾病 医学 理论计算机科学 病理 数学 统计 数据库 操作系统 传染病(医学专业)
作者
Yanbei Liu,Henan Li,Tao Luo,Changqing Zhang,Zhitao Xiao,Ying Wei,Yaozong Gao,Feng Shi,Fei Shan,Dinggang Shen
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:42 (2): 557-567 被引量:14
标识
DOI:10.1109/tmi.2022.3226575
摘要

With rapid worldwide spread of Coronavirus Disease 2019 (COVID-19), jointly identifying severe COVID-19 cases from mild ones and predicting the conversion time (from mild to severe) is essential to optimize the workflow and reduce the clinician's workload. In this study, we propose a novel framework for COVID-19 diagnosis, termed as Structural Attention Graph Neural Network (SAGNN), which can combine the multi-source information including features extracted from chest CT, latent lung structural distribution, and non-imaging patient information to conduct diagnosis of COVID-19 severity and predict the conversion time from mild to severe. Specifically, we first construct a graph to incorporate structural information of the lung and adopt graph attention network to iteratively update representations of lung segments. To distinguish different infection degrees of left and right lungs, we further introduce a structural attention mechanism. Finally, we introduce demographic information and develop a multi-task learning framework to jointly perform both tasks of classification and regression. Experiments are conducted on a real dataset with 1687 chest CT scans, which includes 1328 mild cases and 359 severe cases. Experimental results show that our method achieves the best classification (e.g., 86.86% in terms of Area Under Curve) and regression (e.g., 0.58 in terms of Correlation Coefficient) performance, compared with other comparison methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
酷炫蛋挞完成签到 ,获得积分10
刚刚
刚刚
Ann完成签到,获得积分10
1秒前
1秒前
在水一方应助Schmidt采纳,获得10
1秒前
gwfew发布了新的文献求助10
1秒前
健壮鸡翅完成签到,获得积分10
2秒前
yan123发布了新的文献求助10
2秒前
3秒前
Rei发布了新的文献求助10
3秒前
科研通AI2S应助木_1123采纳,获得10
3秒前
3秒前
4秒前
5秒前
5秒前
彭于晏应助文车采纳,获得10
5秒前
5秒前
了尘发布了新的文献求助10
6秒前
英俊的铭应助jiangjing采纳,获得10
6秒前
米酒汤圆发布了新的文献求助10
6秒前
海贵发布了新的文献求助20
6秒前
星辰大海应助俊逸的问兰采纳,获得10
6秒前
6秒前
笑点低青曼完成签到,获得积分10
6秒前
鲤鱼南莲发布了新的文献求助10
6秒前
6秒前
cczz发布了新的文献求助10
7秒前
7秒前
南音发布了新的文献求助10
7秒前
受伤飞柏完成签到,获得积分10
8秒前
8秒前
zyy应助badada采纳,获得10
8秒前
sloox完成签到,获得积分10
9秒前
海盗船长发布了新的文献求助20
9秒前
gwfew完成签到,获得积分10
9秒前
9秒前
9秒前
魔幻蓉发布了新的文献求助10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Limits of Participatory Action Research: When Does Participatory “Action” Alliance Become Problematic, and How Can You Tell? 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5545721
求助须知:如何正确求助?哪些是违规求助? 4631761
关于积分的说明 14622099
捐赠科研通 4573427
什么是DOI,文献DOI怎么找? 2507524
邀请新用户注册赠送积分活动 1484223
关于科研通互助平台的介绍 1455530