已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Structural Attention Graph Neural Network for Diagnosis and Prediction of COVID-19 Severity

计算机科学 工作量 图形 2019年冠状病毒病(COVID-19) 回归 人工智能 工作流程 人工神经网络 模式识别(心理学) 数据挖掘 机器学习 疾病 医学 理论计算机科学 病理 数学 统计 数据库 操作系统 传染病(医学专业)
作者
Yanbei Liu,Henan Li,Tao Luo,Changqing Zhang,Zhitao Xiao,Ying Wei,Yaozong Gao,Feng Shi,Fei Shan,Dinggang Shen
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:42 (2): 557-567 被引量:14
标识
DOI:10.1109/tmi.2022.3226575
摘要

With rapid worldwide spread of Coronavirus Disease 2019 (COVID-19), jointly identifying severe COVID-19 cases from mild ones and predicting the conversion time (from mild to severe) is essential to optimize the workflow and reduce the clinician's workload. In this study, we propose a novel framework for COVID-19 diagnosis, termed as Structural Attention Graph Neural Network (SAGNN), which can combine the multi-source information including features extracted from chest CT, latent lung structural distribution, and non-imaging patient information to conduct diagnosis of COVID-19 severity and predict the conversion time from mild to severe. Specifically, we first construct a graph to incorporate structural information of the lung and adopt graph attention network to iteratively update representations of lung segments. To distinguish different infection degrees of left and right lungs, we further introduce a structural attention mechanism. Finally, we introduce demographic information and develop a multi-task learning framework to jointly perform both tasks of classification and regression. Experiments are conducted on a real dataset with 1687 chest CT scans, which includes 1328 mild cases and 359 severe cases. Experimental results show that our method achieves the best classification (e.g., 86.86% in terms of Area Under Curve) and regression (e.g., 0.58 in terms of Correlation Coefficient) performance, compared with other comparison methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
于鱼发布了新的文献求助10
1秒前
刘66666完成签到,获得积分20
1秒前
2秒前
3秒前
李健应助危机的尔琴采纳,获得10
3秒前
4秒前
刘66666发布了新的文献求助10
5秒前
5秒前
5秒前
6秒前
小晴天完成签到,获得积分20
7秒前
小二郎应助Sylvia采纳,获得30
9秒前
拼搏剑心发布了新的文献求助10
10秒前
kangk完成签到 ,获得积分10
10秒前
我最棒完成签到,获得积分10
10秒前
江睿曦发布了新的文献求助10
10秒前
11秒前
12秒前
13秒前
15秒前
斯文败类应助于鱼采纳,获得10
16秒前
yudiao发布了新的文献求助10
16秒前
大个应助辛勤远望采纳,获得10
17秒前
19秒前
21秒前
pure完成签到 ,获得积分10
22秒前
NexusExplorer应助zilhua采纳,获得10
22秒前
WWW完成签到 ,获得积分10
23秒前
谢丹完成签到 ,获得积分10
24秒前
啊啊完成签到,获得积分10
24秒前
细心语琴发布了新的文献求助10
25秒前
结实万仇发布了新的文献求助10
25秒前
27秒前
27秒前
ASH完成签到 ,获得积分10
31秒前
32秒前
33秒前
37秒前
39秒前
haha完成签到 ,获得积分10
39秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5590129
求助须知:如何正确求助?哪些是违规求助? 4674579
关于积分的说明 14794548
捐赠科研通 4630299
什么是DOI,文献DOI怎么找? 2532556
邀请新用户注册赠送积分活动 1501218
关于科研通互助平台的介绍 1468571