Structural Attention Graph Neural Network for Diagnosis and Prediction of COVID-19 Severity

计算机科学 工作量 图形 2019年冠状病毒病(COVID-19) 回归 人工智能 工作流程 人工神经网络 模式识别(心理学) 数据挖掘 机器学习 疾病 医学 理论计算机科学 病理 数学 统计 数据库 操作系统 传染病(医学专业)
作者
Yanbei Liu,Henan Li,Tao Luo,Changqing Zhang,Zhitao Xiao,Ying Wei,Yaozong Gao,Feng Shi,Fei Shan,Dinggang Shen
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:42 (2): 557-567 被引量:14
标识
DOI:10.1109/tmi.2022.3226575
摘要

With rapid worldwide spread of Coronavirus Disease 2019 (COVID-19), jointly identifying severe COVID-19 cases from mild ones and predicting the conversion time (from mild to severe) is essential to optimize the workflow and reduce the clinician's workload. In this study, we propose a novel framework for COVID-19 diagnosis, termed as Structural Attention Graph Neural Network (SAGNN), which can combine the multi-source information including features extracted from chest CT, latent lung structural distribution, and non-imaging patient information to conduct diagnosis of COVID-19 severity and predict the conversion time from mild to severe. Specifically, we first construct a graph to incorporate structural information of the lung and adopt graph attention network to iteratively update representations of lung segments. To distinguish different infection degrees of left and right lungs, we further introduce a structural attention mechanism. Finally, we introduce demographic information and develop a multi-task learning framework to jointly perform both tasks of classification and regression. Experiments are conducted on a real dataset with 1687 chest CT scans, which includes 1328 mild cases and 359 severe cases. Experimental results show that our method achieves the best classification (e.g., 86.86% in terms of Area Under Curve) and regression (e.g., 0.58 in terms of Correlation Coefficient) performance, compared with other comparison methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
梦云点灯关注了科研通微信公众号
刚刚
彩色青亦完成签到,获得积分10
刚刚
七qiqi发布了新的文献求助10
刚刚
1秒前
星星完成签到 ,获得积分10
1秒前
内向的青荷完成签到,获得积分10
1秒前
tingz发布了新的文献求助10
1秒前
dew应助高小明采纳,获得20
2秒前
HYD完成签到 ,获得积分10
2秒前
Tracy完成签到,获得积分10
2秒前
小宋完成签到,获得积分10
2秒前
2秒前
Liying完成签到 ,获得积分10
2秒前
祥子完成签到,获得积分10
3秒前
LXY完成签到,获得积分10
3秒前
fei完成签到 ,获得积分10
3秒前
浮游应助甲乙丙丁采纳,获得10
4秒前
rum完成签到,获得积分10
4秒前
4秒前
5秒前
qiu完成签到,获得积分10
5秒前
5秒前
6秒前
畅快芾发布了新的文献求助10
6秒前
欢呼的世立完成签到 ,获得积分10
7秒前
lalaland发布了新的文献求助10
7秒前
杉杉小趴菜完成签到,获得积分10
7秒前
7秒前
7秒前
落后的玉米完成签到,获得积分10
8秒前
8秒前
自由珊发布了新的文献求助10
8秒前
8秒前
jing完成签到 ,获得积分10
9秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
回复对方发布了新的文献求助30
10秒前
tana98906完成签到 ,获得积分10
10秒前
Anna完成签到,获得积分10
10秒前
Keira发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
化妆品原料学 1000
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5645458
求助须知:如何正确求助?哪些是违规求助? 4768941
关于积分的说明 15029289
捐赠科研通 4804094
什么是DOI,文献DOI怎么找? 2568703
邀请新用户注册赠送积分活动 1525977
关于科研通互助平台的介绍 1485604