Adaptive prediction of turbine profile loss and multi-objective optimization in a wide incidence range

航程(航空) 计算机科学 级联 入射(几何) 人工神经网络 均方误差 涡轮机 控制理论(社会学) 人工智能 工程类 统计 数学 机械工程 航空航天工程 化学工程 控制(管理) 几何学
作者
Jiahui Wang,Zhao Yin,Hualiang Zhang,Hongtao Tang,Yujie Xu,Haisheng Chen
出处
期刊:Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science [SAGE]
卷期号:237 (12): 2696-2713
标识
DOI:10.1177/09544062221140969
摘要

The loss prediction model plays a crucial role in turbine design for fast performance prediction and a shorter design cycle. Owing to the design requirements of high-efficiency turbines under a wide range of operating conditions, the loss prediction of the off-design incidence is increasingly important. However, limited by the modeling database and traditional modeling methods, the accuracy and adaptability of the existing off-design incidence loss predictions are insufficient. This paper proposes an adaptive prediction method based on machine learning and develops a multi-objective optimization process based on adaptive prediction. Machine learning (neural network) is applied for more flexible and accurate loss predictions over a wide incidence range. Compared with two classic loss models (Ainley and Mathieson model and Benner model), the adaptive prediction model significantly improves the ability to predict turbine profile loss with off-design incidence, particularly under large incidence conditions. The prediction root mean square error can be reduced by up to 73.8% (absolute value: 0.063). Furthermore, the multi-objective optimization method based on adaptive prediction is applied to the aerodynamic optimization of the original cascades with a wide incidence range. The weighted objective of the optimized cascade (Cri = 0.211) is reduced by 8.7% compared with that of the original cascade (Cri = 0.231). Within the range of full incidence angle (−40° to +20°), the variation of profile loss is reduced by 24.0%. This study is a preliminary exploration aimed at establishing an accurate turbine loss prediction system based on machine learning, the feasibility, and superiority of this approach are confirmed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
ding应助科研通管家采纳,获得10
1秒前
1秒前
华仔应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
jmy完成签到,获得积分10
1秒前
Leif应助科研通管家采纳,获得10
1秒前
Orange应助科研通管家采纳,获得10
1秒前
小二郎应助科研通管家采纳,获得10
1秒前
英俊的铭应助科研通管家采纳,获得10
1秒前
SciGPT应助科研通管家采纳,获得10
1秒前
无花果应助科研通管家采纳,获得10
1秒前
积极的板栗完成签到 ,获得积分10
1秒前
咯咚完成签到 ,获得积分10
1秒前
ding应助科研通管家采纳,获得10
1秒前
CodeCraft应助科研通管家采纳,获得10
1秒前
今后应助科研通管家采纳,获得10
1秒前
研友_VZG7GZ应助科研通管家采纳,获得10
1秒前
完美世界应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
maox1aoxin应助科研通管家采纳,获得30
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
2秒前
领导范儿应助科研通管家采纳,获得10
2秒前
今后应助科研通管家采纳,获得10
2秒前
QXS发布了新的文献求助10
2秒前
2秒前
2秒前
2秒前
Liekkas发布了新的文献求助10
2秒前
可爱的函函应助bdvdsrwteges采纳,获得10
4秒前
木木雨发布了新的文献求助10
5秒前
鬲木发布了新的文献求助10
5秒前
mao12wang发布了新的文献求助10
5秒前
L坨坨完成签到 ,获得积分10
5秒前
耿强发布了新的文献求助10
5秒前
jmy发布了新的文献求助10
6秒前
科研小黑子完成签到,获得积分20
6秒前
6秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759