Adaptive prediction of turbine profile loss and multi-objective optimization in a wide incidence range

航程(航空) 计算机科学 级联 入射(几何) 人工神经网络 均方误差 涡轮机 控制理论(社会学) 人工智能 工程类 统计 数学 机械工程 航空航天工程 化学工程 控制(管理) 几何学
作者
Jiahui Wang,Zhao Yin,Hualiang Zhang,Hongtao Tang,Yujie Xu,Haisheng Chen
出处
期刊:Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science [SAGE Publishing]
卷期号:237 (12): 2696-2713
标识
DOI:10.1177/09544062221140969
摘要

The loss prediction model plays a crucial role in turbine design for fast performance prediction and a shorter design cycle. Owing to the design requirements of high-efficiency turbines under a wide range of operating conditions, the loss prediction of the off-design incidence is increasingly important. However, limited by the modeling database and traditional modeling methods, the accuracy and adaptability of the existing off-design incidence loss predictions are insufficient. This paper proposes an adaptive prediction method based on machine learning and develops a multi-objective optimization process based on adaptive prediction. Machine learning (neural network) is applied for more flexible and accurate loss predictions over a wide incidence range. Compared with two classic loss models (Ainley and Mathieson model and Benner model), the adaptive prediction model significantly improves the ability to predict turbine profile loss with off-design incidence, particularly under large incidence conditions. The prediction root mean square error can be reduced by up to 73.8% (absolute value: 0.063). Furthermore, the multi-objective optimization method based on adaptive prediction is applied to the aerodynamic optimization of the original cascades with a wide incidence range. The weighted objective of the optimized cascade (Cri = 0.211) is reduced by 8.7% compared with that of the original cascade (Cri = 0.231). Within the range of full incidence angle (−40° to +20°), the variation of profile loss is reduced by 24.0%. This study is a preliminary exploration aimed at establishing an accurate turbine loss prediction system based on machine learning, the feasibility, and superiority of this approach are confirmed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
ssw完成签到,获得积分10
刚刚
小鱼儿发布了新的文献求助10
1秒前
大模型应助芋头采纳,获得10
1秒前
2秒前
yang完成签到,获得积分10
2秒前
2秒前
kk发布了新的文献求助10
2秒前
ssw发布了新的文献求助10
3秒前
文艺的芹菜完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
5秒前
张曰淼给张曰淼的求助进行了留言
6秒前
6秒前
GG关闭了GG文献求助
7秒前
SherlockJia应助kk采纳,获得10
8秒前
研友_VZG7GZ应助调皮铸海采纳,获得10
9秒前
10秒前
大方元风发布了新的文献求助200
10秒前
11秒前
11秒前
善学以致用应助nqterysc采纳,获得10
12秒前
13秒前
14秒前
14秒前
15秒前
15秒前
英俊的铭应助kk采纳,获得10
15秒前
16秒前
16秒前
隐形曼青应助精明的天抒采纳,获得10
16秒前
温乘云发布了新的文献求助10
17秒前
17秒前
19秒前
三年H发布了新的文献求助10
19秒前
20秒前
20秒前
132132zl完成签到,获得积分10
20秒前
勤恳函完成签到,获得积分10
21秒前
21秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956520
求助须知:如何正确求助?哪些是违规求助? 3502655
关于积分的说明 11109426
捐赠科研通 3233441
什么是DOI,文献DOI怎么找? 1787343
邀请新用户注册赠送积分活动 870650
科研通“疑难数据库(出版商)”最低求助积分说明 802141