作者
Micaela Paula Del Gaudio,Scheila Iria Kraus,Tayza Martins Melzer,Pamela Soledad Bustos,Marı́a Gabriela Ortega
摘要
Aerial parts (leaves and stems) of Berberis ruscifolia Lam. are a usual preparation as an analgesic, anti-inflammatory, antimalarial, antibacterial, and digestive in folk medicine. However, there were no previous studies of its chemical composition and biological activity related to analgesic effects.The evaluation of the anti-nociception of the infusion (I), the decoction (D), and the ethanolic extract (EE) obtained from aerial parts of B. ruscifolia and its main chemical constituent in them, in mouse models.The chemical constituent of B. ruscifolia extracts was evaluated and quantified by LC-MS and HPLC methodology. The inhibition of nociception in mice was analyzed by formalin and acetic acid-induced contortions tests. Also, when the formalin test was performed to evaluate the antinociceptive activity, the inhibition of edema formation and the antipyretic effect of each extract were simultaneously evaluated in the same experiment. For the oral administration in the in vivo assays, doses ranging from 10 to 1000 mg/kg and 10-30 mg/kg were used for extract and the chemical compound, respectively.The presence of berberine (Berb) was identified in the three evaluated extracts where the EE showed the highest content of this compound getting a yield of 2%, while in the I and D, Berb is present at 0.2%. The three extracts promoted a reduction of the contortions induced by acetic acid, being observed in EE the highest activity with 63 ± 6% of significant inhibition of the nociceptive behavior at a dose of 300 mg/kg, while D significantly inhibited 32 ± 12% at the same dose and for I at a dose of 1000 mg/kg an inhibition of 44 ± 8% was observed. Likewise, in the formalin trial, I and EE reduced nociception at a dose of 1000 (31 ± 5%) and 300 (35 ± 3%) mg/kg, respectively in the neurogenic phase, while in the second phase of the experiment, all the extracts evaluated showed an antinociceptive effect, with significant inhibition of I of 54 ± 6% and D of 44 ± 5% at a dose of 1000 mg/kg and for EE showed a 63 ± 2% inhibition at a dose of 300 mg/kg being the one with the highest antinociceptive activity. These extracts showed no inhibition in temperature and formalin-injected paw edema formation when compared to the control. As for Berb, at a 30 mg/kg dose, it showed significant inhibition of 70 ± 5% in the acetic acid-induced contortion test.Altogether, the present results evidenced the analgesic properties of B. ruscifolia, scientific information presented for the first time, and also provided important knowledge not reported so far about the chemical composition of its extracts, by identifying the presence of Berb in them. Finally, we were able to conclude that the analgesic effect demonstrated by this medicinal plant is partly due to the presence of Berb.