亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Prediction of Alzheimer's progression based on multimodal Deep-Learning-based fusion and visual Explainability of time-series data

计算机科学 循环神经网络 人工智能 召回 认知 卷积神经网络 前提 深度学习 磁共振成像 机器学习 模式识别(心理学) 人工神经网络 医学 心理学 放射科 认知心理学 精神科 哲学 语言学
作者
Nasir Rahim,Shaker El–Sappagh,Sajid Ali,Khan Muhammad,Javier Del Ser,Tamer Abuhmed
出处
期刊:Information Fusion [Elsevier BV]
卷期号:92: 363-388 被引量:55
标识
DOI:10.1016/j.inffus.2022.11.028
摘要

Alzheimer's disease (AD) is a neurological illness that causes cognitive impairment and has no known treatment. The premise for delivering timely therapy is the early diagnosis of AD before clinical symptoms appear. Mild cognitive impairment is an intermediate stage in which cognitively normal patients can be distinguished from those with AD. In this study, we propose a hybrid multimodal deep-learning framework consisting of a 3D convolutional neural network (3D CNN) followed by a bidirectional recurrent neural network (BRNN). The proposed 3D CNN captures intra-slice features from each 3D magnetic resonance imaging (MRI) volume, whereas the BRNN module identifies the inter-sequence patterns that lead to AD. This study is conducted based on longitudinal 3D MRI volumes collected over a six-months time span. We further investigate the effect of fusing MRI with cross-sectional biomarkers, such as patients' demographic and cognitive scores from their baseline visit. In addition, we present a novel explainability approach that helps domain experts and practitioners to understand the end output of the proposed multimodal. Extensive experiments reveal that the accuracy, precision, recall, and area under the receiver operating characteristic curve of the proposed framework are 96%, 99%, 92%, and 96%, respectively. These results are based on the fusion of MRI and demographic features and indicate that the proposed framework becomes more stable when exposed to a more complete set of longitudinal data. Moreover, the explainability module provides extra support for the progression claim by more accurately identifying the brain regions that domain experts commonly report during diagnoses.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
iman完成签到,获得积分10
1秒前
1秒前
无辜笑容发布了新的文献求助10
8秒前
从容芮完成签到,获得积分0
15秒前
27秒前
40秒前
苹果发布了新的文献求助10
40秒前
caca完成签到,获得积分0
42秒前
大模型应助cube半肥半瘦采纳,获得10
42秒前
chichqq发布了新的文献求助30
45秒前
50秒前
乐乐应助chichqq采纳,获得10
57秒前
量子星尘发布了新的文献求助10
58秒前
1分钟前
小岩完成签到 ,获得积分10
1分钟前
李志全完成签到 ,获得积分10
1分钟前
齐阳春完成签到 ,获得积分10
1分钟前
时尚战斗机应助iman采纳,获得30
1分钟前
忧伤的绍辉完成签到 ,获得积分10
1分钟前
舒服的吗喽完成签到,获得积分10
1分钟前
金钰贝儿完成签到,获得积分10
1分钟前
1分钟前
1分钟前
Ava应助远枫orz采纳,获得30
1分钟前
1分钟前
科研通AI5应助科研通管家采纳,获得10
1分钟前
1分钟前
hh发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
TXZ06发布了新的文献求助30
2分钟前
2分钟前
方悦完成签到 ,获得积分10
2分钟前
3分钟前
Lucas应助Janusfaces采纳,获得10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
herococa应助科研通管家采纳,获得60
3分钟前
herococa应助科研通管家采纳,获得10
3分钟前
TXZ06完成签到,获得积分10
4分钟前
4分钟前
4分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3957025
求助须知:如何正确求助?哪些是违规求助? 3503050
关于积分的说明 11111175
捐赠科研通 3234068
什么是DOI,文献DOI怎么找? 1787710
邀请新用户注册赠送积分活动 870748
科研通“疑难数据库(出版商)”最低求助积分说明 802250