Prediction of Alzheimer's progression based on multimodal Deep-Learning-based fusion and visual Explainability of time-series data

计算机科学 循环神经网络 人工智能 召回 认知 卷积神经网络 前提 深度学习 磁共振成像 机器学习 模式识别(心理学) 人工神经网络 医学 心理学 放射科 认知心理学 精神科 哲学 语言学
作者
Nasir Rahim,Shaker El–Sappagh,Saqib Ali,Khan Muhammad,Javier Del Ser,Tamer Abuhmed
出处
期刊:Information Fusion [Elsevier]
卷期号:92: 363-388 被引量:44
标识
DOI:10.1016/j.inffus.2022.11.028
摘要

Alzheimer's disease (AD) is a neurological illness that causes cognitive impairment and has no known treatment. The premise for delivering timely therapy is the early diagnosis of AD before clinical symptoms appear. Mild cognitive impairment is an intermediate stage in which cognitively normal patients can be distinguished from those with AD. In this study, we propose a hybrid multimodal deep-learning framework consisting of a 3D convolutional neural network (3D CNN) followed by a bidirectional recurrent neural network (BRNN). The proposed 3D CNN captures intra-slice features from each 3D magnetic resonance imaging (MRI) volume, whereas the BRNN module identifies the inter-sequence patterns that lead to AD. This study is conducted based on longitudinal 3D MRI volumes collected over a six-months time span. We further investigate the effect of fusing MRI with cross-sectional biomarkers, such as patients' demographic and cognitive scores from their baseline visit. In addition, we present a novel explainability approach that helps domain experts and practitioners to understand the end output of the proposed multimodal. Extensive experiments reveal that the accuracy, precision, recall, and area under the receiver operating characteristic curve of the proposed framework are 96%, 99%, 92%, and 96%, respectively. These results are based on the fusion of MRI and demographic features and indicate that the proposed framework becomes more stable when exposed to a more complete set of longitudinal data. Moreover, the explainability module provides extra support for the progression claim by more accurately identifying the brain regions that domain experts commonly report during diagnoses.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
asdfj应助断绝的采纳,获得10
刚刚
刚刚
111发布了新的文献求助10
刚刚
蛋黄酥酥完成签到,获得积分20
1秒前
秀丽的咖啡完成签到,获得积分10
2秒前
草莓尖尖完成签到 ,获得积分10
2秒前
3秒前
李爱国应助ATT采纳,获得10
4秒前
FashionBoy应助谨慎青亦采纳,获得10
4秒前
5秒前
洁净白枫应助stop here采纳,获得10
5秒前
5秒前
完美世界应助bailuoshiqi采纳,获得10
6秒前
6秒前
6秒前
领导范儿应助科研通管家采纳,获得10
6秒前
6秒前
iNk应助科研通管家采纳,获得20
6秒前
科研通AI2S应助科研通管家采纳,获得30
6秒前
6秒前
酷波er应助科研通管家采纳,获得10
7秒前
8R60d8应助科研通管家采纳,获得10
7秒前
在水一方应助科研通管家采纳,获得10
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
搜集达人应助科研通管家采纳,获得10
7秒前
8R60d8应助科研通管家采纳,获得10
7秒前
8秒前
居选金完成签到,获得积分10
8秒前
8秒前
8秒前
顾矜应助1233采纳,获得10
9秒前
科研通AI2S应助stop here采纳,获得10
9秒前
9秒前
9秒前
liaowei0021发布了新的文献求助10
10秒前
谢钰完成签到 ,获得积分10
10秒前
瓜子发布了新的文献求助10
10秒前
hl应助walle采纳,获得10
10秒前
牛牛发布了新的文献求助10
11秒前
12秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Becoming: An Introduction to Jung's Concept of Individuation 600
Die Gottesanbeterin: Mantis religiosa: 656 500
Communist propaganda: a fact book, 1957-1958 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3170569
求助须知:如何正确求助?哪些是违规求助? 2821667
关于积分的说明 7935825
捐赠科研通 2482104
什么是DOI,文献DOI怎么找? 1322285
科研通“疑难数据库(出版商)”最低求助积分说明 633607
版权声明 602608