心钠素
氧化应激
纤维
化学
活性氧
淀粉样蛋白(真菌学)
体内
NPR1
细胞生物学
发病机制
蛋白质聚集
药理学
内科学
生物
生物化学
医学
利钠肽
遗传学
无机化学
心力衰竭
作者
Yijing Tang,Dong Zhang,Yung Chang,Jie Zheng
标识
DOI:10.1021/acschemneuro.2c00712
摘要
Both cardiovascular diseases (CVDs) and Alzheimer's disease (AD) share some common risk factors (e.g., age, obesity, oxidative stress, inflammation, hypertension) that contribute to their overlapping pathogenesis, indicating a "head-to-heart" pathological connection between CVDs and AD. To explore this potential connection at the protein level, we study the potential cross-seeding (heterotypic interactions) between CVD-associated atrial natriuretic peptide (ANP) and AD-associated β-amyloid (Aβ). Collective aggregation and cell assays demonstrate the cross-seeding of ANP with different Aβ species including monomers, oligomers, and fibrils with high binding affinity (KD = 1.234–1.797 μM) in a dose-dependent manner. Such ANP-induced cross-seeding also modifies the Aβ aggregation pathway, fibril morphology, and cell deposition pattern by inhibiting Aβ fibrillization from small aggregates, disassembling preformed Aβ fibrils, and alleviating Aβ-associated cytotoxicity. Finally, using transgenic C. elegans worms that express the human muscle-specific Aβ1–42, ANP can also effectively delay Aβ-induced worm paralysis, decrease Aβ plaques in worm brains, and reduce reactive oxygen species (ROS) production, confirming its in vivo inhibition ability to prevent neurodevelopmental toxicity in worms. This work discovers not only a new cross-seeding system between the two disease-related proteins but also a new finding that ANP possesses a new biological function as an Aβ inhibitor in the nonaggregated state.
科研通智能强力驱动
Strongly Powered by AbleSci AI