Membrane separation technology is an effective treatment for complex wastewater. However, severe membrane fouling restricts its practical application. Photocatalytic composite membranes with self-cleaning properties can efficaciously ease the membrane fouling. Herein, we constructed an advanced ternary heterojunction photocatalytic composite membrane by coupling MXene, Bi2MoO6 and BiOBr nanomaterials. The prepared BiOBr/Bi2MoO6@MXene composite membrane had a high permeability (1296.91 L⋅m−2⋅h−1⋅bar−1) and exhibited excellent comprehensive removal ratios for antibiotics and dyes (Tetracycline hydrochloride and Ciprofloxacin: ≥90%, Congo red: >98%). During the self-cleaning performance test, the composite membrane maintained high permeability and selectivity after 5 cycles. Density functional theory calculation (DFT) analysis revealed that the enhanced photocatalytic activity was attributed to the efficient separation of electron-hole pairs between the ternary heterojunctions. This integrated membrane with both membrane separation and photocatalysis has good application prospects in the removal of various pollutants in the wastewater field.