Computational Predictions of Nonclinical Pharmacokinetics at the Drug Design Stage

可解释性 人工智能 计算机科学 药代动力学 药物与药物的相互作用 药物发现 机器学习 均方预测误差 差异(会计) 模式识别(心理学) 生物信息学 药理学 医学 生物 会计 业务
作者
Raya Stoyanova,Paul Maximilian Katzberger,Leonid Komissarov,Aous Khadhraoui,Lisa Sach-Peltason,Katrin Groebke Zbinden,Torsten Schindler,Nenad Manevski
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:63 (2): 442-458 被引量:21
标识
DOI:10.1021/acs.jcim.2c01134
摘要

Although computational predictions of pharmacokinetics (PK) are desirable at the drug design stage, existing approaches are often limited by prediction accuracy and human interpretability. Using a discovery data set of mouse and rat PK studies at Roche (9,685 unique compounds), we performed a proof-of-concept study to predict key PK properties from chemical structure alone, including plasma clearance (CLp), volume of distribution at steady-state (Vss), and oral bioavailability (F). Ten machine learning (ML) models were evaluated, including Single-Task, Multitask, and transfer learning approaches (i.e., pretraining with in vitro data). In addition to prediction accuracy, we emphasized human interpretability of outcomes, especially the quantification of uncertainty, applicability domains, and explanations of predictions in terms of molecular features. Results show that intravenous (IV) PK properties (CLp and Vss) can be predicted with good precision (average absolute fold error, AAFE of 1.96–2.84 depending on data split) and low bias (average fold error, AFE of 0.98–1.36), with AutoGluon, Gaussian Process Regressor (GP), and ChemProp displaying the best performance. Driven by higher complexity of oral PK studies, predictions of F were more challenging, with the best AAFE values of 2.35–2.60 and higher overprediction bias (AFE of 1.45–1.62). Multi-Task approaches and pretraining of ChemProp neural networks with in vitro data showed similar precision to Single-Task models but helped reduce the bias and increase correlations between observations and predictions. A combination of GP-computed prediction variance, molecular clustering, and dimensionality-reduction provided valuable quantitative insights into prediction uncertainty and applicability domains. SHAPley Additive exPlanations (SHAPs) highlighted molecular features contributing to prediction outcomes of Vss, providing explanations that could aid drug design. Combined results show that computational predictions of PK are feasible at the drug design stage, with several ML technologies converging to successfully leverage historical PK data sets. Further studies are needed to unlock the full potential of this approach, especially with respect to data set sizes and quality, transfer learning between in vitro and in vivo data sets, model-independent quantification of uncertainty, and explainability of predictions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
gong发布了新的文献求助10
2秒前
akihi完成签到 ,获得积分10
2秒前
yiyiyi发布了新的文献求助10
3秒前
彭于晏应助贾克斯采纳,获得10
4秒前
勤奋的兔子完成签到,获得积分10
4秒前
5秒前
xxx完成签到,获得积分10
5秒前
123zyuyu完成签到,获得积分10
7秒前
7秒前
7秒前
8秒前
XON_Ni发布了新的文献求助10
8秒前
Lanyx完成签到,获得积分10
9秒前
别皱眉完成签到,获得积分20
10秒前
所所应助满意可乐采纳,获得20
11秒前
12秒前
Gakay发布了新的文献求助10
12秒前
哇哇哇哇发布了新的文献求助30
13秒前
13秒前
CipherSage应助M二以采纳,获得10
14秒前
赤道发布了新的文献求助10
15秒前
longlong发布了新的文献求助10
15秒前
dai发布了新的文献求助30
16秒前
16秒前
16秒前
852应助快乐的夜云采纳,获得10
16秒前
理想国的建造者完成签到,获得积分10
17秒前
东门猪八戒完成签到,获得积分10
17秒前
17秒前
CodeCraft应助Ann采纳,获得10
18秒前
共享精神应助灵巧的煎饼采纳,获得10
18秒前
山月完成签到,获得积分10
19秒前
卑微学术人完成签到 ,获得积分10
19秒前
九玫离瑰完成签到 ,获得积分10
19秒前
20秒前
大模型应助小跳蚤采纳,获得10
20秒前
小陈发布了新的文献求助10
21秒前
21秒前
年轻的芒果完成签到,获得积分20
21秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Very-high-order BVD Schemes Using β-variable THINC Method 830
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3248330
求助须知:如何正确求助?哪些是违规求助? 2891731
关于积分的说明 8268453
捐赠科研通 2559668
什么是DOI,文献DOI怎么找? 1388584
科研通“疑难数据库(出版商)”最低求助积分说明 650772
邀请新用户注册赠送积分活动 627744