Computational Predictions of Nonclinical Pharmacokinetics at the Drug Design Stage

可解释性 人工智能 计算机科学 药代动力学 药物与药物的相互作用 药物发现 机器学习 均方预测误差 差异(会计) 模式识别(心理学) 生物信息学 药理学 医学 生物 会计 业务
作者
Raya Stoyanova,Paul Maximilian Katzberger,Leonid Komissarov,Aous Khadhraoui,Lisa Sach-Peltason,Katrin Groebke Zbinden,Torsten Schindler,Nenad Manevski
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:63 (2): 442-458 被引量:22
标识
DOI:10.1021/acs.jcim.2c01134
摘要

Although computational predictions of pharmacokinetics (PK) are desirable at the drug design stage, existing approaches are often limited by prediction accuracy and human interpretability. Using a discovery data set of mouse and rat PK studies at Roche (9,685 unique compounds), we performed a proof-of-concept study to predict key PK properties from chemical structure alone, including plasma clearance (CLp), volume of distribution at steady-state (Vss), and oral bioavailability (F). Ten machine learning (ML) models were evaluated, including Single-Task, Multitask, and transfer learning approaches (i.e., pretraining with in vitro data). In addition to prediction accuracy, we emphasized human interpretability of outcomes, especially the quantification of uncertainty, applicability domains, and explanations of predictions in terms of molecular features. Results show that intravenous (IV) PK properties (CLp and Vss) can be predicted with good precision (average absolute fold error, AAFE of 1.96–2.84 depending on data split) and low bias (average fold error, AFE of 0.98–1.36), with AutoGluon, Gaussian Process Regressor (GP), and ChemProp displaying the best performance. Driven by higher complexity of oral PK studies, predictions of F were more challenging, with the best AAFE values of 2.35–2.60 and higher overprediction bias (AFE of 1.45–1.62). Multi-Task approaches and pretraining of ChemProp neural networks with in vitro data showed similar precision to Single-Task models but helped reduce the bias and increase correlations between observations and predictions. A combination of GP-computed prediction variance, molecular clustering, and dimensionality-reduction provided valuable quantitative insights into prediction uncertainty and applicability domains. SHAPley Additive exPlanations (SHAPs) highlighted molecular features contributing to prediction outcomes of Vss, providing explanations that could aid drug design. Combined results show that computational predictions of PK are feasible at the drug design stage, with several ML technologies converging to successfully leverage historical PK data sets. Further studies are needed to unlock the full potential of this approach, especially with respect to data set sizes and quality, transfer learning between in vitro and in vivo data sets, model-independent quantification of uncertainty, and explainability of predictions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Wsyyy完成签到 ,获得积分10
2秒前
5秒前
6秒前
7秒前
7秒前
pink完成签到,获得积分10
8秒前
梁同学发布了新的文献求助30
8秒前
8秒前
小橘子完成签到,获得积分10
8秒前
dhhaoyihong完成签到,获得积分20
9秒前
苏卿发布了新的文献求助30
10秒前
娜娜发布了新的文献求助10
11秒前
12秒前
13秒前
jyy应助冉冉爱吃西瓜采纳,获得10
13秒前
MchemG应助冉冉爱吃西瓜采纳,获得10
13秒前
13秒前
jyy应助冉冉爱吃西瓜采纳,获得10
13秒前
13秒前
dhhaoyihong发布了新的文献求助10
13秒前
13秒前
14秒前
顾矜应助野性的枕头采纳,获得10
15秒前
小橘子发布了新的文献求助10
16秒前
17秒前
苏卿发布了新的文献求助30
18秒前
18秒前
淡然的小萱应助月下荷花采纳,获得50
18秒前
慕青应助轩辕唯雪采纳,获得10
18秒前
gky完成签到,获得积分10
19秒前
贤惠的白开水完成签到 ,获得积分10
21秒前
xx发布了新的文献求助10
21秒前
23秒前
24秒前
乖猫要努力应助小橘子采纳,获得10
24秒前
酷波er应助糟糕的铁锤采纳,获得50
24秒前
25秒前
轻松盼烟完成签到,获得积分20
26秒前
量子星尘发布了新的文献求助10
29秒前
轻松盼烟发布了新的文献求助10
29秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979704
求助须知:如何正确求助?哪些是违规求助? 3523679
关于积分的说明 11218338
捐赠科研通 3261196
什么是DOI,文献DOI怎么找? 1800490
邀请新用户注册赠送积分活动 879113
科研通“疑难数据库(出版商)”最低求助积分说明 807182