Computational Predictions of Nonclinical Pharmacokinetics at the Drug Design Stage

可解释性 人工智能 计算机科学 药代动力学 药物与药物的相互作用 药物发现 机器学习 均方预测误差 差异(会计) 模式识别(心理学) 生物信息学 药理学 医学 生物 会计 业务
作者
Raya Stoyanova,Paul Maximilian Katzberger,Leonid Komissarov,Aous Khadhraoui,Lisa Sach-Peltason,Katrin Groebke Zbinden,Torsten Schindler,Nenad Manevski
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:63 (2): 442-458 被引量:22
标识
DOI:10.1021/acs.jcim.2c01134
摘要

Although computational predictions of pharmacokinetics (PK) are desirable at the drug design stage, existing approaches are often limited by prediction accuracy and human interpretability. Using a discovery data set of mouse and rat PK studies at Roche (9,685 unique compounds), we performed a proof-of-concept study to predict key PK properties from chemical structure alone, including plasma clearance (CLp), volume of distribution at steady-state (Vss), and oral bioavailability (F). Ten machine learning (ML) models were evaluated, including Single-Task, Multitask, and transfer learning approaches (i.e., pretraining with in vitro data). In addition to prediction accuracy, we emphasized human interpretability of outcomes, especially the quantification of uncertainty, applicability domains, and explanations of predictions in terms of molecular features. Results show that intravenous (IV) PK properties (CLp and Vss) can be predicted with good precision (average absolute fold error, AAFE of 1.96–2.84 depending on data split) and low bias (average fold error, AFE of 0.98–1.36), with AutoGluon, Gaussian Process Regressor (GP), and ChemProp displaying the best performance. Driven by higher complexity of oral PK studies, predictions of F were more challenging, with the best AAFE values of 2.35–2.60 and higher overprediction bias (AFE of 1.45–1.62). Multi-Task approaches and pretraining of ChemProp neural networks with in vitro data showed similar precision to Single-Task models but helped reduce the bias and increase correlations between observations and predictions. A combination of GP-computed prediction variance, molecular clustering, and dimensionality-reduction provided valuable quantitative insights into prediction uncertainty and applicability domains. SHAPley Additive exPlanations (SHAPs) highlighted molecular features contributing to prediction outcomes of Vss, providing explanations that could aid drug design. Combined results show that computational predictions of PK are feasible at the drug design stage, with several ML technologies converging to successfully leverage historical PK data sets. Further studies are needed to unlock the full potential of this approach, especially with respect to data set sizes and quality, transfer learning between in vitro and in vivo data sets, model-independent quantification of uncertainty, and explainability of predictions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
量子星尘发布了新的文献求助100
刚刚
tingyi完成签到,获得积分10
1秒前
energyharvester完成签到 ,获得积分10
1秒前
金云完成签到 ,获得积分10
1秒前
joy完成签到,获得积分10
1秒前
科研通AI5应助唠叨的夜玉采纳,获得10
2秒前
学渣一枚完成签到,获得积分10
3秒前
青藤之凉发布了新的文献求助10
3秒前
Wang完成签到,获得积分10
3秒前
长琴思顾发布了新的文献求助10
3秒前
你听风在吹完成签到,获得积分10
3秒前
lijianguo应助LGH采纳,获得10
3秒前
Owen应助拼搏草莓采纳,获得10
4秒前
曹帅哥发布了新的文献求助10
4秒前
秀丽千山发布了新的文献求助10
4秒前
科研通AI5应助维克托采纳,获得10
4秒前
LC完成签到 ,获得积分10
5秒前
5秒前
Nathan完成签到,获得积分10
5秒前
维尼熊完成签到 ,获得积分20
6秒前
超级无心完成签到,获得积分10
6秒前
lily完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
乐乐应助xiaoxiaoliang采纳,获得10
7秒前
fuxi完成签到,获得积分10
7秒前
谢珊发布了新的文献求助10
7秒前
7秒前
科研小白完成签到,获得积分20
7秒前
打打应助路遥采纳,获得10
8秒前
8秒前
8秒前
zzz完成签到,获得积分10
8秒前
8秒前
姜姜完成签到,获得积分10
8秒前
9秒前
aqaqaqa完成签到,获得积分10
9秒前
碧蓝的安柏完成签到,获得积分20
9秒前
10秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
ALUMINUM STANDARDS AND DATA 500
Walter Gilbert: Selected Works 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3666902
求助须知:如何正确求助?哪些是违规求助? 3225730
关于积分的说明 9765171
捐赠科研通 2935586
什么是DOI,文献DOI怎么找? 1607790
邀请新用户注册赠送积分活动 759374
科研通“疑难数据库(出版商)”最低求助积分说明 735302