Raman spectroscopy for the identification of body fluid traces: Semen and vaginal fluid mixture

精液 拉曼光谱 体液 色谱法 分析化学(期刊) 人工智能 化学 材料科学 计算机科学 生物 物理 光学 医学 病理 解剖
作者
Aliaksandra Sikirzhytskaya,Vitali Sikirzhytski,Luis Pérez-Almodóvar,Igor K. Lednev
出处
期刊:Forensic Chemistry [Elsevier BV]
卷期号:32: 100468-100468 被引量:8
标识
DOI:10.1016/j.forc.2023.100468
摘要

Raman spectroscopy is a versatile research tool that has found numerous practical applications recently. High specificity, non-destructive nature, and potential for on-field application make Raman spectroscopy an attractive tool for forensic science. The great potential of Raman spectroscopy for confirmatory identification of all main body fluids has been recently reported (Vyas et al. Forensic Chemistry 2020, 100247). Bringing the developed methodology from the laboratory to the crime scene requires further method development and validation for realistic, practical samples subjected to environmental conditions, contamination, substrate interference, aging, etc. This work targets the validation of the developed methodology for body fluid mixtures, semen, and vaginal fluid in particular, which are critical for sexual assault cases. Near-infrared (NIR) Raman spectra of dry semen-vaginal fluid mixtures were acquired in automatic scanning mode and subjected to advanced statistical analysis. Support Vector Machine Discriminant Analysis (SVMDA) was used to develop three binary classification models, including vaginal fluid vs mixture, semen vs mixture, and semen vs vaginal fluid. These binary models were combined to build a single tertiary model, which resulted in the 100% correct classification on the sample level for all examined mixtures (1.5% to 100% for vaginal fluid and 3% to 100% for semen). The developed analytical approach could be used for various other applications when complex binary mixtures need to be detected and analyzed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Qi完成签到 ,获得积分10
刚刚
桐桐应助lll采纳,获得10
刚刚
zhangwj226完成签到,获得积分10
刚刚
blank12完成签到,获得积分10
刚刚
赵芳完成签到,获得积分10
1秒前
曲艺完成签到,获得积分10
1秒前
追寻凌青完成签到,获得积分10
1秒前
桀庚完成签到 ,获得积分10
1秒前
buyiyijian发布了新的文献求助10
1秒前
liaodongjun应助Joan_89采纳,获得10
2秒前
quanjiazhi发布了新的文献求助10
2秒前
三石盟约完成签到,获得积分10
2秒前
3秒前
阔达的盼波完成签到,获得积分10
3秒前
3秒前
Hiyori发布了新的文献求助10
3秒前
4秒前
顺利秋灵完成签到,获得积分20
4秒前
牙膏完成签到,获得积分10
4秒前
终有时发布了新的文献求助10
5秒前
王小迪完成签到,获得积分10
5秒前
shy136完成签到 ,获得积分10
5秒前
远方关注了科研通微信公众号
5秒前
Margaret完成签到 ,获得积分10
6秒前
传奇3应助hyx采纳,获得10
6秒前
OSASACB完成签到 ,获得积分10
6秒前
Kuta完成签到,获得积分10
7秒前
顾末发布了新的文献求助10
7秒前
Goblin完成签到 ,获得积分10
7秒前
汉堡包应助idXin_Qing采纳,获得10
8秒前
HWei完成签到,获得积分10
8秒前
Oliver完成签到,获得积分10
9秒前
鸣笛应助科研通管家采纳,获得30
9秒前
慕青应助科研通管家采纳,获得10
9秒前
领导范儿应助科研通管家采纳,获得10
9秒前
充电宝应助科研通管家采纳,获得10
9秒前
是阿乔呢完成签到,获得积分10
9秒前
今后应助科研通管家采纳,获得10
9秒前
852应助科研通管家采纳,获得10
9秒前
英俊的铭应助科研通管家采纳,获得10
9秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953650
求助须知:如何正确求助?哪些是违规求助? 3499409
关于积分的说明 11095552
捐赠科研通 3229987
什么是DOI,文献DOI怎么找? 1785841
邀请新用户注册赠送积分活动 869592
科研通“疑难数据库(出版商)”最低求助积分说明 801479