已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Building an ensemble learning model for gastric cancer cell line classification via rapid raman spectroscopy

拉曼光谱 细胞培养 癌细胞 癌症 鉴定(生物学) 癌细胞系 细胞 化学 计算机科学 计算生物学 生物 物理 遗传学 生物化学 光学 植物
作者
Kunxiang Liu,Bo Liu,Yuhong Zhang,Qi-Nian Wu,Ming Zhong,Lindong Shang,Yu Wang,Peng Liang,Weiguo Wang,Qi Zhao,Bei Li
出处
期刊:Computational and structural biotechnology journal [Elsevier]
卷期号:21: 802-811 被引量:12
标识
DOI:10.1016/j.csbj.2022.12.050
摘要

Cell misuse and cross-contamination can affect the accuracy of cell research results and result in wasted time, manpower and material resources. Thus, cell line identification is important and necessary. At present, the commonly used cell line identification methods need cell staining and culturing. There is therefore a need to develop a new method for the rapid and automated identification of cell lines. Raman spectroscopy has become one of the emerging techniques in the field of microbial identification, with the advantages of being rapid and noninvasive and providing molecular information for biological samples, which is beneficial in the identification of cell lines. In this study, we built a library of Raman spectra for gastric mucosal epithelial cell lines GES-1 and gastric cancer cell lines, such as AGS, BGC-823, HGC-27, MKN-45, MKN-74 and SNU-16. Five spectral datasets were constructed using spectral data and included the full spectrum, fingerprint region, high-wavelength number region and Raman background of Raman spectra. A stacking ensemble learning model, SL-Raman, was built for different datasets, and gastric cancer cell identification was achieved. For the gastric cancer cells we studied, the differentiation accuracy of SL-Raman was 100% for one of the gastric cancer cells and 100% for six of the gastric cancer cells. Additionally, the separation accuracy for two gastric cancer cells with different degrees of differentiation was 100%. These results demonstrate that Raman spectroscopy combined with SL-Raman may be a new method for the rapid and accurate identification of gastric cancer. In addition, the accuracy of 94.38% for classifying Raman spectral background data using machine learning demonstrates that the Raman spectral background contains some useful spectral features. These data have been overlooked in previous studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ting发布了新的文献求助10
3秒前
丘比特应助zhoujialin820采纳,获得10
7秒前
赘婿应助阿尼采纳,获得10
9秒前
慕青应助怕黑山柏采纳,获得10
11秒前
可爱的函函应助Ting采纳,获得10
12秒前
YOLO完成签到,获得积分10
12秒前
13秒前
可靠背包发布了新的文献求助10
15秒前
万能图书馆应助刘峥峥采纳,获得10
15秒前
15秒前
18秒前
19秒前
萝卜花1968发布了新的文献求助10
20秒前
充电宝应助五月采纳,获得10
23秒前
win发布了新的文献求助10
23秒前
24秒前
阿尼发布了新的文献求助10
25秒前
小蘑菇应助可靠背包采纳,获得10
26秒前
ddm完成签到,获得积分20
26秒前
研友_VZG7GZ应助hehe采纳,获得10
27秒前
别来无恙发布了新的文献求助10
28秒前
28秒前
28秒前
28秒前
ziyuexu发布了新的文献求助10
29秒前
ZXR发布了新的文献求助30
29秒前
小蘑菇应助高源源采纳,获得10
30秒前
32秒前
ddm发布了新的文献求助10
33秒前
33秒前
务实飞荷完成签到 ,获得积分10
33秒前
35秒前
NexusExplorer应助ziyuexu采纳,获得10
35秒前
35秒前
liaoyoujiao发布了新的文献求助10
37秒前
别来无恙完成签到,获得积分10
38秒前
38秒前
Cordero完成签到,获得积分10
39秒前
念雪儿吖发布了新的文献求助10
40秒前
华仔应助lxk666采纳,获得10
40秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1000
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
Plate Tectonics 500
Igneous rocks and processes: a practical guide(第二版) 500
Mantodea of the World: Species Catalog 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3407613
求助须知:如何正确求助?哪些是违规求助? 3012153
关于积分的说明 8852644
捐赠科研通 2699283
什么是DOI,文献DOI怎么找? 1479924
科研通“疑难数据库(出版商)”最低求助积分说明 684111
邀请新用户注册赠送积分活动 678358