Comprehensive review on machine learning methodologies for modeling dye removal processes in wastewater

可重用性 计算机科学 过程(计算) 透明度(行为) 选择(遗传算法) 软件 斯科普斯 工艺工程 工业工程 机器学习 生化工程 工程类 操作系统 程序设计语言 法学 计算机安全 梅德林 政治学
作者
Suraj Kumar Bhagat,Karl Ezra Pilario,Olusola Emmanuel Babalola,Tiyasha Tiyasha,Muhammad Yaqub,Chijioke Elijah Onu,Konstantina Pyrgaki,Mayadah W. Falah,Ali H. Jawad,Dina A. Yaseen,Noureddine Barka,Zaher Mundher Yaseen‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬
出处
期刊:Journal of Cleaner Production [Elsevier]
卷期号:385: 135522-135522 被引量:48
标识
DOI:10.1016/j.jclepro.2022.135522
摘要

A wide range of dyes are being disposed in water bodies from several industrial runoff and the quantity is rapidly increasing over the years. From an environmental safety point of view, it is urgent to improve the removal process of dyes. It is important to understand the stochastic and highly redundant behavior of the process of dye removal (DR) in wastewater treatment. This leads to better utilization of Machine Learning (ML) models for both optimization as well as prediction of the DR process efficiency. In this review, 200 papers (Years, 2006–2021) have been systematically reviewed from the Web of Science and Scopus-indexed journals, covering a total of 84 journals. All applied ML models have been thoroughly studied in the review and analyzed in terms of their architecture setup, hyper-parameters selection, performance, advantages, and disadvantages. A wide range of optimization methods for hyper-parameters tuning were analyzed and discussed scientifically. Explicit information about the data sizes, splitting structure for training-validation-testing along with input and output selection approaches have been logically reviewed and discussed. Data availability, transparency, and reusability have been reported adequately. Various software for data-driven modeling have been discussed with their pros and cons. Trends in statistical evaluators (among about 60 types) have been discussed with their pros and cons including their sensitivity with the data fluctuations. Moreover, the most popular performance metrics have reported. In addition, the DR mechanism has reviewed and discussed inclusively. Extensive media used for the decolorization were discussed thoroughly, including their physical and chemical characteristics, along with feasibility and equilibrium data based on Langmuir model. The cost of the applied media in the decolorization process reported adequately. Finally, the research gap and future road map of the next 5 years, which bridge the gap of the domain are scientifically drafted along with the limitations. This critical review not only provides the appraisal of growth of DR research integrated with ML in the last couple of decades but also scouts the potential studies where all experimental, chemical and modeling processes should be taken under consideration.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
maggie完成签到 ,获得积分10
2秒前
ycc完成签到,获得积分10
2秒前
赘婿应助琦琦采纳,获得10
4秒前
炒栗子发布了新的文献求助10
4秒前
4秒前
cjj完成签到,获得积分10
5秒前
iedq完成签到 ,获得积分10
6秒前
淞淞于我完成签到 ,获得积分10
8秒前
叉叉茶完成签到 ,获得积分10
9秒前
mrcat发布了新的文献求助10
11秒前
13秒前
Charon完成签到,获得积分20
13秒前
Myronhaoyuan完成签到,获得积分10
14秒前
大气夜山完成签到 ,获得积分10
16秒前
d.zhang完成签到,获得积分10
17秒前
yg发布了新的文献求助10
17秒前
ZJZALLEN完成签到 ,获得积分10
18秒前
科研通AI2S应助Ulrica采纳,获得10
18秒前
魏魏完成签到,获得积分10
23秒前
24秒前
JayWu完成签到,获得积分10
26秒前
共享精神应助科研通管家采纳,获得10
27秒前
在水一方应助科研通管家采纳,获得10
27秒前
ding应助科研通管家采纳,获得10
27秒前
一支蕉应助科研通管家采纳,获得20
27秒前
ding应助科研通管家采纳,获得10
27秒前
NexusExplorer应助科研通管家采纳,获得10
27秒前
27秒前
28秒前
琦琦发布了新的文献求助10
30秒前
喜宝完成签到 ,获得积分10
31秒前
32秒前
顾矜应助橡皮鱼采纳,获得10
32秒前
隐形曼青应助王治豪采纳,获得10
33秒前
35秒前
熊猫完成签到,获得积分0
38秒前
zmx关闭了zmx文献求助
41秒前
希望天下0贩的0应助gxz采纳,获得10
41秒前
41秒前
wanci应助外向的书包采纳,获得10
43秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140361
求助须知:如何正确求助?哪些是违规求助? 2791107
关于积分的说明 7797976
捐赠科研通 2447576
什么是DOI,文献DOI怎么找? 1301949
科研通“疑难数据库(出版商)”最低求助积分说明 626354
版权声明 601194