Comprehensive review on machine learning methodologies for modeling dye removal processes in wastewater

可重用性 计算机科学 过程(计算) 透明度(行为) 选择(遗传算法) 软件 斯科普斯 工艺工程 工业工程 机器学习 生化工程 工程类 操作系统 程序设计语言 法学 计算机安全 梅德林 政治学
作者
Suraj Kumar Bhagat,Karl Ezra Pilario,Olusola Emmanuel Babalola,Tiyasha Tiyasha,Muhammad Yaqub,Chijioke Elijah Onu,Konstantina Pyrgaki,Mayadah W. Falah,Ali H. Jawad,Dina A. Yaseen,Noureddine Barka,Zaher Mundher Yaseen‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬
出处
期刊:Journal of Cleaner Production [Elsevier]
卷期号:385: 135522-135522 被引量:48
标识
DOI:10.1016/j.jclepro.2022.135522
摘要

A wide range of dyes are being disposed in water bodies from several industrial runoff and the quantity is rapidly increasing over the years. From an environmental safety point of view, it is urgent to improve the removal process of dyes. It is important to understand the stochastic and highly redundant behavior of the process of dye removal (DR) in wastewater treatment. This leads to better utilization of Machine Learning (ML) models for both optimization as well as prediction of the DR process efficiency. In this review, 200 papers (Years, 2006–2021) have been systematically reviewed from the Web of Science and Scopus-indexed journals, covering a total of 84 journals. All applied ML models have been thoroughly studied in the review and analyzed in terms of their architecture setup, hyper-parameters selection, performance, advantages, and disadvantages. A wide range of optimization methods for hyper-parameters tuning were analyzed and discussed scientifically. Explicit information about the data sizes, splitting structure for training-validation-testing along with input and output selection approaches have been logically reviewed and discussed. Data availability, transparency, and reusability have been reported adequately. Various software for data-driven modeling have been discussed with their pros and cons. Trends in statistical evaluators (among about 60 types) have been discussed with their pros and cons including their sensitivity with the data fluctuations. Moreover, the most popular performance metrics have reported. In addition, the DR mechanism has reviewed and discussed inclusively. Extensive media used for the decolorization were discussed thoroughly, including their physical and chemical characteristics, along with feasibility and equilibrium data based on Langmuir model. The cost of the applied media in the decolorization process reported adequately. Finally, the research gap and future road map of the next 5 years, which bridge the gap of the domain are scientifically drafted along with the limitations. This critical review not only provides the appraisal of growth of DR research integrated with ML in the last couple of decades but also scouts the potential studies where all experimental, chemical and modeling processes should be taken under consideration.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bkagyin应助马保国123采纳,获得10
刚刚
刚刚
1秒前
大个应助乐观的幼珊采纳,获得10
1秒前
1秒前
1秒前
1秒前
顺顺完成签到,获得积分10
3秒前
3秒前
小马甲应助a1oft采纳,获得10
3秒前
Keke完成签到,获得积分10
3秒前
4秒前
自然秋柳发布了新的文献求助10
4秒前
candy6663339完成签到,获得积分10
4秒前
weiwei完成签到,获得积分10
4秒前
大个应助苗条的山晴采纳,获得10
5秒前
努力发一区完成签到 ,获得积分0
5秒前
蒋时晏应助恶恶么v采纳,获得30
5秒前
6秒前
6秒前
gennp完成签到,获得积分10
6秒前
gg完成签到,获得积分10
6秒前
1111发布了新的文献求助10
6秒前
情怀应助wjh采纳,获得10
7秒前
7秒前
Hey关闭了Hey文献求助
7秒前
学渣向下完成签到,获得积分10
7秒前
咚咚咚发布了新的文献求助10
7秒前
8秒前
willen完成签到,获得积分10
8秒前
8秒前
奇怪的柒完成签到,获得积分10
9秒前
9秒前
9秒前
10秒前
文静的枫叶完成签到,获得积分10
10秒前
科目三应助神麒小雪采纳,获得10
10秒前
zzznznnn发布了新的文献求助10
11秒前
pbf发布了新的文献求助20
11秒前
科研通AI5应助有风采纳,获得10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759