亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Developing a Deep Q-Learning and Neural Network Framework for Trajectory Planning

计算机科学 弹道 运动规划 控制器(灌溉) PID控制器 人工智能 深度学习 避障 路径(计算) 一般化 强化学习 混蛋 导线 特征(语言学) 控制理论(社会学) 控制工程 机器人 控制(管理) 工程类 移动机器人 数学 加速度 哲学 数学分析 物理 天文 生物 程序设计语言 经典力学 地理 温度控制 语言学 大地测量学 农学
作者
Venkata Satya Rahul Kosuru,Ashwin Kavasseri Venkitaraman
出处
期刊:European Journal of Engineering and Technology Research [European Open Access Publishing (Europa Publishing)]
卷期号:7 (6): 148-157 被引量:14
标识
DOI:10.24018/ejeng.2022.7.6.2944
摘要

With the recent expansion in Self-Driving and Autonomy field, every vehicle is occupied with some kind or alter driver assist features in order to compensate driver comfort. Expansion further to fully Autonomy is extremely complicated since it requires planning safe paths in unstable and dynamic environments. Impression learning and other path learning techniques lack generalization and safety assurances. Selecting the model and avoiding obstacles are two difficult issues in the research of autonomous vehicles. Q-learning has evolved into a potent learning framework that can now acquire complicated strategies in high-dimensional contexts to the advent of deep feature representation. A deep Q-learning approach is proposed in this study by using experienced replay and contextual expertise to address these issues. A path planning strategy utilizing deep Q-learning on the network edge node is proposed to enhance the driving performance of autonomous vehicles in terms of energy consumption. When linked vehicles maintain the recommended speed, the suggested approach simulates the trajectory using a proportional-integral-derivative (PID) concept controller. Smooth trajectory and reduced jerk are ensured when employing the PID controller to monitor the terminals. The computational findings demonstrate that, in contrast to traditional techniques, the approach could investigate a path in an unknown situation with small iterations and a higher average payoff. It can also more quickly converge to an ideal strategic plan.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
淡淡的洋葱完成签到,获得积分10
7秒前
Panacea完成签到 ,获得积分10
8秒前
独特的易形完成签到 ,获得积分10
14秒前
18秒前
jeff完成签到,获得积分10
18秒前
20秒前
开胃咖喱完成签到,获得积分10
21秒前
Huzhu发布了新的文献求助10
27秒前
Tania完成签到,获得积分10
30秒前
38秒前
41秒前
42秒前
cometx发布了新的文献求助10
44秒前
46秒前
花陵完成签到 ,获得积分10
1分钟前
帅气的熊猫完成签到,获得积分10
1分钟前
粽子完成签到,获得积分10
1分钟前
彭于晏应助阿瓜师傅采纳,获得10
1分钟前
1分钟前
不才完成签到,获得积分10
1分钟前
cometx完成签到,获得积分10
1分钟前
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
魏欣娜发布了新的文献求助10
1分钟前
1分钟前
去码头整点薯条完成签到,获得积分10
2分钟前
徐per爱豆完成签到 ,获得积分10
2分钟前
caca完成签到,获得积分0
2分钟前
2分钟前
ADcal完成签到 ,获得积分10
2分钟前
2分钟前
badabadaba关注了科研通微信公众号
2分钟前
2分钟前
3分钟前
badabadaba发布了新的文献求助30
3分钟前
星辰大海应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
大模型应助科研通管家采纳,获得10
3分钟前
金沐栋发布了新的文献求助10
4分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
上海破产法庭破产实务案例精选(2019-2024) 500
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5476330
求助须知:如何正确求助?哪些是违规求助? 4577995
关于积分的说明 14363306
捐赠科研通 4505871
什么是DOI,文献DOI怎么找? 2468931
邀请新用户注册赠送积分活动 1456508
关于科研通互助平台的介绍 1430177