Developing a Deep Q-Learning and Neural Network Framework for Trajectory Planning

计算机科学 弹道 运动规划 控制器(灌溉) PID控制器 人工智能 深度学习 避障 路径(计算) 一般化 强化学习 混蛋 导线 特征(语言学) 控制理论(社会学) 控制工程 机器人 控制(管理) 工程类 移动机器人 数学 加速度 哲学 温度控制 数学分析 语言学 生物 大地测量学 经典力学 农学 程序设计语言 物理 天文 地理
作者
Venkata Satya Rahul Kosuru,Ashwin Kavasseri Venkitaraman
出处
期刊:European Journal of Engineering and Technology Research [European Open Access Publishing (Europa Publishing)]
卷期号:7 (6): 148-157 被引量:14
标识
DOI:10.24018/ejeng.2022.7.6.2944
摘要

With the recent expansion in Self-Driving and Autonomy field, every vehicle is occupied with some kind or alter driver assist features in order to compensate driver comfort. Expansion further to fully Autonomy is extremely complicated since it requires planning safe paths in unstable and dynamic environments. Impression learning and other path learning techniques lack generalization and safety assurances. Selecting the model and avoiding obstacles are two difficult issues in the research of autonomous vehicles. Q-learning has evolved into a potent learning framework that can now acquire complicated strategies in high-dimensional contexts to the advent of deep feature representation. A deep Q-learning approach is proposed in this study by using experienced replay and contextual expertise to address these issues. A path planning strategy utilizing deep Q-learning on the network edge node is proposed to enhance the driving performance of autonomous vehicles in terms of energy consumption. When linked vehicles maintain the recommended speed, the suggested approach simulates the trajectory using a proportional-integral-derivative (PID) concept controller. Smooth trajectory and reduced jerk are ensured when employing the PID controller to monitor the terminals. The computational findings demonstrate that, in contrast to traditional techniques, the approach could investigate a path in an unknown situation with small iterations and a higher average payoff. It can also more quickly converge to an ideal strategic plan.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健应助科研通管家采纳,获得20
1秒前
柯一一应助科研通管家采纳,获得10
2秒前
顾矜应助科研通管家采纳,获得10
2秒前
执葵发布了新的文献求助10
2秒前
研友_VZG7GZ应助科研通管家采纳,获得10
2秒前
CipherSage应助科研通管家采纳,获得30
2秒前
Lucas应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
热切菩萨应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
咔咔完成签到 ,获得积分10
2秒前
慕青应助mue采纳,获得10
2秒前
璨澄发布了新的文献求助10
3秒前
5秒前
8秒前
思源应助明天开始戒绿茶采纳,获得10
9秒前
10秒前
11秒前
俭朴的又菡完成签到,获得积分10
11秒前
小苹果发布了新的文献求助10
11秒前
大洋洋完成签到,获得积分10
11秒前
HKY发布了新的文献求助10
12秒前
14秒前
14秒前
东木应助执葵采纳,获得20
16秒前
AlwaysKim发布了新的文献求助10
16秒前
16秒前
17秒前
FashionBoy应助涵泽采纳,获得10
17秒前
mue发布了新的文献求助10
19秒前
19秒前
噜噜晓发布了新的文献求助10
19秒前
20秒前
科研通AI2S应助CC采纳,获得10
21秒前
23秒前
顾矜应助duxiao采纳,获得10
23秒前
一切顺利完成签到,获得积分10
24秒前
25秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962205
求助须知:如何正确求助?哪些是违规求助? 3508430
关于积分的说明 11140874
捐赠科研通 3241109
什么是DOI,文献DOI怎么找? 1791341
邀请新用户注册赠送积分活动 872825
科研通“疑难数据库(出版商)”最低求助积分说明 803382