DDAC-SpAM: A Distributed Algorithm for Fitting High-dimensional Sparse Additive Models with Feature Division and Decorrelation

计算机科学 去相关 外稃(植物学) 算法 分而治之算法 数学证明 可扩展性 加性模型 估计员 组分(热力学) 广义加性模型 特征选择 推论 航程(航空) 特征(语言学) 钥匙(锁) 数据挖掘 理论计算机科学 数学 人工智能 机器学习 统计 数据库 材料科学 几何学 生态学 复合材料 哲学 物理 热力学 生物 禾本科 语言学 计算机安全
作者
Yifan He,Ruiyang Wu,Yong Zhou,Yang Feng
标识
DOI:10.1080/01621459.2023.2225743
摘要

AbstractAbstract–Distributed statistical learning has become a popular technique for large-scale data analysis. Most existing work in this area focuses on dividing the observations, but we propose a new algorithm, DDAC-SpAM, which divides the features under a high-dimensional sparse additive model. Our approach involves three steps: divide, decorrelate, and conquer. The decorrelation operation enables each local estimator to recover the sparsity pattern for each additive component without imposing strict constraints on the correlation structure among variables. The effectiveness and efficiency of the proposed algorithm are demonstrated through theoretical analysis and empirical results on both synthetic and real data. The theoretical results include both the consistent sparsity pattern recovery as well as statistical inference for each additive functional component. Our approach provides a practical solution for fitting sparse additive models, with promising applications in a wide range of domains. Supplementary materials for this article are available online.KEYWORDS: Additive modelConsistencyDecorrelate and conquerDivideFeature space partitionVariable selection Supplementary MaterialsThe supplementary material consists of Lemma S.1–S.6 and the proofs of all lemmas, theorems, and corollaries.AcknowledgmentsWe thank the editor, the AE, and anonymous reviewers for their insightful comments which have greatly improved the scope and quality of the article.Disclosure StatementThe authors report there are no competing interests to declare.Additional informationFundingZhou was supported by the State Key Program of National Natural Science Foundation of China (71931004) and National Natural Science Foundation of China (92046005) and the National Key R&D Program of China (2021YFA1000100, 2021YFA1000101). Feng was supported by NIH grant 1R21AG074205-01, NYU University Research Challenge Fund, a grant from NYU School of Global Public Health, and through the NYU IT High Performance Computing resources, services, and staff expertise.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
画仲人发布了新的文献求助10
2秒前
研友_gnvY5L完成签到 ,获得积分10
3秒前
魔幻安筠发布了新的文献求助10
5秒前
vivi发布了新的文献求助10
5秒前
Xincheng发布了新的文献求助10
6秒前
爆米花应助管箴采纳,获得10
6秒前
6秒前
迅速的岩完成签到,获得积分10
8秒前
8秒前
8秒前
潜龙完成签到,获得积分10
10秒前
lanlan完成签到,获得积分10
10秒前
vivi完成签到,获得积分10
11秒前
蔚蓝完成签到,获得积分10
11秒前
淼淼发布了新的文献求助10
13秒前
踏实沂完成签到,获得积分10
16秒前
沧笙踏歌发布了新的文献求助10
17秒前
zzz完成签到,获得积分10
19秒前
20秒前
20秒前
22秒前
humorr完成签到,获得积分10
24秒前
壹君发布了新的文献求助30
26秒前
26秒前
KevenDing完成签到,获得积分10
27秒前
李紫硕完成签到,获得积分10
27秒前
jenningseastera应助kong采纳,获得30
27秒前
28秒前
栗子哇呀完成签到 ,获得积分10
28秒前
罗勍完成签到,获得积分10
29秒前
YIQI发布了新的文献求助10
30秒前
sljzhangbiao11完成签到,获得积分10
31秒前
33秒前
7890733完成签到,获得积分10
35秒前
善学以致用应助骆十八采纳,获得30
37秒前
38秒前
思维隋发布了新的文献求助10
39秒前
文瑄给文瑄的求助进行了留言
41秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
The Cambridge Handbook of Social Theory 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3999546
求助须知:如何正确求助?哪些是违规求助? 3539008
关于积分的说明 11275620
捐赠科研通 3277833
什么是DOI,文献DOI怎么找? 1807725
邀请新用户注册赠送积分活动 884127
科研通“疑难数据库(出版商)”最低求助积分说明 810142