DDAC-SpAM: A Distributed Algorithm for Fitting High-dimensional Sparse Additive Models with Feature Division and Decorrelation

计算机科学 去相关 外稃(植物学) 算法 分而治之算法 数学证明 可扩展性 加性模型 估计员 组分(热力学) 广义加性模型 特征选择 推论 航程(航空) 特征(语言学) 钥匙(锁) 数据挖掘 理论计算机科学 数学 人工智能 机器学习 统计 数据库 生态学 物理 几何学 禾本科 计算机安全 生物 热力学 语言学 材料科学 哲学 复合材料
作者
Yifan He,Ruiyang Wu,Yong Zhou,Yang Feng
标识
DOI:10.1080/01621459.2023.2225743
摘要

AbstractAbstract–Distributed statistical learning has become a popular technique for large-scale data analysis. Most existing work in this area focuses on dividing the observations, but we propose a new algorithm, DDAC-SpAM, which divides the features under a high-dimensional sparse additive model. Our approach involves three steps: divide, decorrelate, and conquer. The decorrelation operation enables each local estimator to recover the sparsity pattern for each additive component without imposing strict constraints on the correlation structure among variables. The effectiveness and efficiency of the proposed algorithm are demonstrated through theoretical analysis and empirical results on both synthetic and real data. The theoretical results include both the consistent sparsity pattern recovery as well as statistical inference for each additive functional component. Our approach provides a practical solution for fitting sparse additive models, with promising applications in a wide range of domains. Supplementary materials for this article are available online.KEYWORDS: Additive modelConsistencyDecorrelate and conquerDivideFeature space partitionVariable selection Supplementary MaterialsThe supplementary material consists of Lemma S.1–S.6 and the proofs of all lemmas, theorems, and corollaries.AcknowledgmentsWe thank the editor, the AE, and anonymous reviewers for their insightful comments which have greatly improved the scope and quality of the article.Disclosure StatementThe authors report there are no competing interests to declare.Additional informationFundingZhou was supported by the State Key Program of National Natural Science Foundation of China (71931004) and National Natural Science Foundation of China (92046005) and the National Key R&D Program of China (2021YFA1000100, 2021YFA1000101). Feng was supported by NIH grant 1R21AG074205-01, NYU University Research Challenge Fund, a grant from NYU School of Global Public Health, and through the NYU IT High Performance Computing resources, services, and staff expertise.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
tt发布了新的文献求助10
1秒前
123456完成签到,获得积分10
2秒前
2秒前
wanci应助我爱学习采纳,获得10
2秒前
快乐尔容发布了新的文献求助10
3秒前
4秒前
4秒前
5秒前
5秒前
alile发布了新的文献求助10
5秒前
乐乐应助逗逗采纳,获得10
5秒前
无限的映之给无限的映之的求助进行了留言
5秒前
6秒前
6秒前
小马甲应助轩辕冰夏采纳,获得10
6秒前
6秒前
陈同学发布了新的文献求助40
7秒前
星辰大海应助安安安采纳,获得10
7秒前
8秒前
FartKing发布了新的文献求助50
8秒前
8秒前
nms170520发布了新的文献求助10
8秒前
9秒前
酷酷酷发布了新的文献求助10
9秒前
tt完成签到,获得积分10
9秒前
10秒前
10秒前
谢大喵发布了新的文献求助10
11秒前
熊尼发布了新的文献求助10
11秒前
搜集达人应助haojiewu采纳,获得10
12秒前
12秒前
uiop发布了新的文献求助10
13秒前
JamesPei应助秦立昊采纳,获得10
13秒前
James完成签到,获得积分10
13秒前
彭于晏完成签到,获得积分10
13秒前
LongY完成签到,获得积分10
13秒前
关小乙完成签到,获得积分10
14秒前
娇气的博士生完成签到,获得积分10
14秒前
dreamlike完成签到,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Routledge Handbook on Spaces of Mental Health and Wellbeing 500
Elle ou lui ? Histoire des transsexuels en France 500
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5321239
求助须知:如何正确求助?哪些是违规求助? 4463064
关于积分的说明 13888665
捐赠科研通 4354148
什么是DOI,文献DOI怎么找? 2391585
邀请新用户注册赠送积分活动 1385183
关于科研通互助平台的介绍 1354924