DDAC-SpAM: A Distributed Algorithm for Fitting High-dimensional Sparse Additive Models with Feature Division and Decorrelation

计算机科学 去相关 外稃(植物学) 算法 分而治之算法 数学证明 可扩展性 加性模型 估计员 组分(热力学) 广义加性模型 特征选择 推论 航程(航空) 特征(语言学) 钥匙(锁) 数据挖掘 理论计算机科学 数学 人工智能 机器学习 统计 数据库 生态学 物理 几何学 禾本科 计算机安全 生物 热力学 语言学 材料科学 哲学 复合材料
作者
Yifan He,Ruiyang Wu,Yong Zhou,Yang Feng
标识
DOI:10.1080/01621459.2023.2225743
摘要

AbstractAbstract–Distributed statistical learning has become a popular technique for large-scale data analysis. Most existing work in this area focuses on dividing the observations, but we propose a new algorithm, DDAC-SpAM, which divides the features under a high-dimensional sparse additive model. Our approach involves three steps: divide, decorrelate, and conquer. The decorrelation operation enables each local estimator to recover the sparsity pattern for each additive component without imposing strict constraints on the correlation structure among variables. The effectiveness and efficiency of the proposed algorithm are demonstrated through theoretical analysis and empirical results on both synthetic and real data. The theoretical results include both the consistent sparsity pattern recovery as well as statistical inference for each additive functional component. Our approach provides a practical solution for fitting sparse additive models, with promising applications in a wide range of domains. Supplementary materials for this article are available online.KEYWORDS: Additive modelConsistencyDecorrelate and conquerDivideFeature space partitionVariable selection Supplementary MaterialsThe supplementary material consists of Lemma S.1–S.6 and the proofs of all lemmas, theorems, and corollaries.AcknowledgmentsWe thank the editor, the AE, and anonymous reviewers for their insightful comments which have greatly improved the scope and quality of the article.Disclosure StatementThe authors report there are no competing interests to declare.Additional informationFundingZhou was supported by the State Key Program of National Natural Science Foundation of China (71931004) and National Natural Science Foundation of China (92046005) and the National Key R&D Program of China (2021YFA1000100, 2021YFA1000101). Feng was supported by NIH grant 1R21AG074205-01, NYU University Research Challenge Fund, a grant from NYU School of Global Public Health, and through the NYU IT High Performance Computing resources, services, and staff expertise.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
南风发布了新的文献求助10
1秒前
猫的树发布了新的文献求助10
3秒前
情怀应助123456采纳,获得10
4秒前
5秒前
小龚发布了新的文献求助10
7秒前
Ava应助niniyiya采纳,获得10
8秒前
8秒前
Lighten完成签到 ,获得积分10
9秒前
11秒前
11秒前
FashionBoy应助科研通管家采纳,获得10
12秒前
中将发布了新的文献求助10
12秒前
lilili应助科研通管家采纳,获得10
12秒前
大个应助aqaq采纳,获得10
12秒前
无花果应助科研通管家采纳,获得10
12秒前
浮游应助科研通管家采纳,获得10
12秒前
浮游应助科研通管家采纳,获得10
12秒前
科研通AI6应助科研通管家采纳,获得10
12秒前
浮游应助科研通管家采纳,获得10
12秒前
丘比特应助科研通管家采纳,获得10
12秒前
12秒前
ceeray23发布了新的文献求助20
13秒前
14秒前
田様应助Ban采纳,获得20
14秒前
斜阳西下柳缠锦完成签到,获得积分10
15秒前
16秒前
斯文败类应助追风少年采纳,获得10
18秒前
GG发布了新的文献求助10
19秒前
20秒前
Soul459完成签到 ,获得积分10
21秒前
21秒前
慕青应助研友_wZrxbL采纳,获得10
22秒前
23秒前
跳跃的浩阑完成签到,获得积分10
23秒前
28秒前
爆米花应助LLL采纳,获得10
29秒前
aqaq发布了新的文献求助10
29秒前
美丽完成签到 ,获得积分10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Hydrothermal Circulation and Seawater Chemistry: Links and Feedbacks 1200
A Half Century of the Sonogashira Reaction 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
Modern Britain, 1750 to the Present (求助第2版!!!) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5159157
求助须知:如何正确求助?哪些是违规求助? 4353699
关于积分的说明 13556582
捐赠科研通 4197328
什么是DOI,文献DOI怎么找? 2302011
邀请新用户注册赠送积分活动 1302035
关于科研通互助平台的介绍 1247140