DDAC-SpAM: A Distributed Algorithm for Fitting High-dimensional Sparse Additive Models with Feature Division and Decorrelation

计算机科学 去相关 外稃(植物学) 算法 分而治之算法 数学证明 可扩展性 加性模型 估计员 组分(热力学) 广义加性模型 特征选择 推论 航程(航空) 特征(语言学) 钥匙(锁) 数据挖掘 理论计算机科学 数学 人工智能 机器学习 统计 数据库 材料科学 几何学 生态学 复合材料 哲学 物理 热力学 生物 禾本科 语言学 计算机安全
作者
Yifan He,Ruiyang Wu,Yong Zhou,Yang Feng
标识
DOI:10.1080/01621459.2023.2225743
摘要

AbstractAbstract–Distributed statistical learning has become a popular technique for large-scale data analysis. Most existing work in this area focuses on dividing the observations, but we propose a new algorithm, DDAC-SpAM, which divides the features under a high-dimensional sparse additive model. Our approach involves three steps: divide, decorrelate, and conquer. The decorrelation operation enables each local estimator to recover the sparsity pattern for each additive component without imposing strict constraints on the correlation structure among variables. The effectiveness and efficiency of the proposed algorithm are demonstrated through theoretical analysis and empirical results on both synthetic and real data. The theoretical results include both the consistent sparsity pattern recovery as well as statistical inference for each additive functional component. Our approach provides a practical solution for fitting sparse additive models, with promising applications in a wide range of domains. Supplementary materials for this article are available online.KEYWORDS: Additive modelConsistencyDecorrelate and conquerDivideFeature space partitionVariable selection Supplementary MaterialsThe supplementary material consists of Lemma S.1–S.6 and the proofs of all lemmas, theorems, and corollaries.AcknowledgmentsWe thank the editor, the AE, and anonymous reviewers for their insightful comments which have greatly improved the scope and quality of the article.Disclosure StatementThe authors report there are no competing interests to declare.Additional informationFundingZhou was supported by the State Key Program of National Natural Science Foundation of China (71931004) and National Natural Science Foundation of China (92046005) and the National Key R&D Program of China (2021YFA1000100, 2021YFA1000101). Feng was supported by NIH grant 1R21AG074205-01, NYU University Research Challenge Fund, a grant from NYU School of Global Public Health, and through the NYU IT High Performance Computing resources, services, and staff expertise.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李爱国应助简单山水采纳,获得10
2秒前
飞乐扣完成签到 ,获得积分10
3秒前
5秒前
思源应助ccccchen采纳,获得10
7秒前
隐形的杨完成签到 ,获得积分10
7秒前
怡然的乘风完成签到 ,获得积分10
8秒前
bbj完成签到,获得积分10
9秒前
zho应助宁静致远采纳,获得10
9秒前
10秒前
caojiarong发布了新的文献求助10
12秒前
田様应助没有答案采纳,获得10
14秒前
EvanBee完成签到,获得积分10
14秒前
研友_ZGR0jn完成签到,获得积分10
14秒前
迟大猫应助科研通管家采纳,获得10
17秒前
我是老大应助科研通管家采纳,获得10
17秒前
英姑应助科研通管家采纳,获得10
17秒前
17秒前
科研通AI5应助科研通管家采纳,获得10
17秒前
17秒前
17秒前
杨文成应助科研通管家采纳,获得10
17秒前
搜集达人应助科研通管家采纳,获得10
18秒前
pluto应助科研通管家采纳,获得10
18秒前
小马甲应助科研通管家采纳,获得10
18秒前
lilac应助科研通管家采纳,获得10
18秒前
没有答案完成签到,获得积分10
19秒前
20秒前
zhangyujin完成签到,获得积分10
20秒前
Jolleyhaha发布了新的文献求助10
21秒前
拉长的保温杯完成签到 ,获得积分10
26秒前
SciGPT应助舒适智宸采纳,获得30
28秒前
小马甲应助大福采纳,获得10
34秒前
爱卿5271完成签到,获得积分0
35秒前
35秒前
MA完成签到,获得积分10
36秒前
36秒前
37秒前
轩轩轩轩完成签到 ,获得积分10
37秒前
xujunjie发布了新的文献求助10
38秒前
汉堡包应助猪猪hero采纳,获得10
38秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737290
求助须知:如何正确求助?哪些是违规求助? 3281175
关于积分的说明 10023282
捐赠科研通 2997875
什么是DOI,文献DOI怎么找? 1644872
邀请新用户注册赠送积分活动 782227
科研通“疑难数据库(出版商)”最低求助积分说明 749731