A Novel Short-Term Traffic Prediction Model Based on SVD and ARIMA With Blockchain in Industrial Internet of Things

自回归积分移动平均 计算机科学 奇异值分解 数据挖掘 流量(计算机网络) 数据建模 希尔伯特-黄变换 噪音(视频) 时间序列 非线性系统 人工智能 机器学习 白噪声 电信 物理 计算机安全 量子力学 数据库 图像(数学)
作者
Ying Miao,Xiuhong Bai,Yuxuan Cao,Yuwen Liu,Fei Dai,Fan Wang,Lianyong Qi,Wanchun Dou
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:10 (24): 21217-21226 被引量:21
标识
DOI:10.1109/jiot.2023.3283611
摘要

With the construction and development of smart cities, accurate and real-time traffic prediction plays a vital role in urban traffic. However, traffic data has the characteristics of non-linearity, non-stationary and complex structure, so traffic prediction has always been a challenging problem. The traditional statistical model is good at dealing with linear data and poor at dealing with nonlinear data. Although the ability to capture nonlinear data has improved, the deep learning approach has difficulty in meeting the real-time requirements of traffic prediction. To solve the above challenges, we propose a novel approach based on the Autoregressive Integrated Moving Average model (ARIMA) model and combining empirical mode decomposition (EMD) and singular value decomposition (SVD) technology, i.e., ESARIMA. This method first uses EMD to stabilize the traffic data, then uses SVD to compress data and reduce the noise, so as to improve the efficiency and accuracy of ARIMA model in predicting traffic flow. Finally, we use real datasets to verify the feasibility of ESARIMA. The experimental results show that our method outperforms state-of-art baselines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
奋斗向南完成签到,获得积分10
1秒前
Hello应助年轻的书本采纳,获得10
2秒前
李健的粉丝团团长应助YY采纳,获得10
4秒前
儒雅的雁山完成签到 ,获得积分10
6秒前
DrKorla完成签到,获得积分10
6秒前
捏个小雪团完成签到 ,获得积分10
8秒前
10秒前
13秒前
积极的帽子完成签到 ,获得积分10
15秒前
15秒前
15秒前
kingwill举报害羞的冷雪求助涉嫌违规
16秒前
咯咚发布了新的文献求助10
16秒前
YH应助科研通管家采纳,获得50
17秒前
CodeCraft应助科研通管家采纳,获得10
17秒前
香蕉觅云应助科研通管家采纳,获得10
17秒前
ED应助科研通管家采纳,获得10
17秒前
彭于晏应助科研通管家采纳,获得10
17秒前
17秒前
ED应助科研通管家采纳,获得10
17秒前
酷波er应助科研通管家采纳,获得10
17秒前
Owen应助科研通管家采纳,获得10
17秒前
17秒前
18秒前
21秒前
21秒前
hu完成签到 ,获得积分10
21秒前
23秒前
咸鱼好闲完成签到 ,获得积分10
23秒前
yundanli发布了新的文献求助10
24秒前
thinking完成签到,获得积分20
26秒前
猪猪hero发布了新的文献求助10
28秒前
ghmghm9910完成签到 ,获得积分10
31秒前
量子星尘发布了新的文献求助10
32秒前
在水一方应助孤独的电话采纳,获得10
35秒前
37秒前
37秒前
38秒前
38秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954414
求助须知:如何正确求助?哪些是违规求助? 3500373
关于积分的说明 11099295
捐赠科研通 3230866
什么是DOI,文献DOI怎么找? 1786171
邀请新用户注册赠送积分活动 869840
科研通“疑难数据库(出版商)”最低求助积分说明 801689