扰动(地质)
控制理论(社会学)
估计员
控制器(灌溉)
模型预测控制
计算机科学
理论(学习稳定性)
频道(广播)
李雅普诺夫函数
数学
控制(管理)
人工智能
电信
非线性系统
统计
机器学习
物理
古生物学
生物
量子力学
农学
作者
Yujian Zhou,Jinhua She,Feng Wang,Makoto Iwasaki
标识
DOI:10.1109/icps58381.2023.10128063
摘要
This paper presents a model-predictive-enabled equivalent-input-disturbance (MPEID) method for disturbance rejection. An EID estimator with a state observer estimates the effect of disturbances in a system. The disturbance estimation will not be directly added to the input channel for disturbance rejection. A cost function that considers the disturbance estimation is designed. An MPC controller calculates an optimal control input by minimizing the cost function. The stability condition of the closed-loop system is analyzed based on the Lyapunov stability theory. Simulation results show that our method has better disturbance-rejection performance than an MPC method when the control input is similar.
科研通智能强力驱动
Strongly Powered by AbleSci AI