Machine learning-based radiomics analysis for predicting local recurrence of primary dermatofibrosarcoma protuberans after surgical treatment

医学 一致性 无线电技术 隆突性皮肤纤维肉瘤 回顾性队列研究 随机森林 放射科 核医学 外科 人工智能 内科学 计算机科学 病理
作者
Cuixiang Cao,Zhilong Yi,Mingwei Xie,Yang Xie,Xin Tang,Bin Tu,Yifeng Gao,Miaojian Wan
出处
期刊:Radiotherapy and Oncology [Elsevier BV]
卷期号:186: 109737-109737 被引量:4
标识
DOI:10.1016/j.radonc.2023.109737
摘要

Dermatofibrosarcoma protuberans (DFSP) is characterized by locally invasive growth patterns and high local recurrence rates. Accurately identifying patients with high local recurrence risk may benefit patients during follow-up and has potential value for making treatment decisions. This study aimed to investigate whether machine learning-based radiomics models could accurately predict the local recurrence of primary DFSP after surgical treatment.This retrospective study included a total of 146 patients with DFSP who underwent MRI scans between 2010 and 2016 from two different institutions: institution 1 (n = 104) for the training set and institution 2 (n = 42) for the external test set. Three radiomics random survival forest (RSF) models were developed using MRI images. Additionally, the performance of the Ki67 index was compared with the three RSF models in the external validation set.The average concordance index (C-index) scores of the RSF models based on fat-saturation T2W (FS-T2W) images, fat-saturation T1W with gadolinium contrast (FS-T1W + C) images, and both FS-T2W and FS-T1W + C images from 10-fold cross-validation in the training set were 0.855 (95% CI: 0.629, 1.00), 0.873 (95% CI: 0.711, 1.00), and 0.875 (95% CI: 0.688, 1.00), respectively. In the external validation set, the C-indexes of the three trained RSF models were higher than that of the Ki67 index (0.838, 0.754, and 0.866 vs. 0.601, respectively).Random survival forest models developed using radiomics features derived from MRI images were proven helpful for accurate prediction of local recurrence of primary DFSP after surgical treatment and showed better predicting performance than the Ki67 index.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顺利兰完成签到 ,获得积分10
2秒前
蔡莹完成签到 ,获得积分10
3秒前
4秒前
轩辕一笑发布了新的文献求助10
5秒前
天天快乐应助wzzz采纳,获得10
6秒前
duanhahaha完成签到,获得积分10
9秒前
10秒前
西扬完成签到 ,获得积分10
10秒前
yuwshuihen发布了新的文献求助10
11秒前
Yuan完成签到,获得积分10
13秒前
乐乐应助黄家宝采纳,获得10
15秒前
霍霍完成签到 ,获得积分10
16秒前
科研通AI5应助小天才采纳,获得10
19秒前
爱因斯坦那个和我一样的科学家完成签到,获得积分10
22秒前
完美世界应助yuwshuihen采纳,获得10
23秒前
11111111完成签到,获得积分10
26秒前
27秒前
世上僅有的榮光之路完成签到,获得积分0
29秒前
尘埃之影完成签到,获得积分10
31秒前
Lig完成签到,获得积分10
32秒前
黄家宝发布了新的文献求助10
32秒前
xcz发布了新的文献求助10
33秒前
大力水手完成签到,获得积分10
38秒前
zhaoyaoshi完成签到 ,获得积分10
38秒前
zheng完成签到 ,获得积分10
38秒前
乐观可兰完成签到 ,获得积分10
41秒前
CodeCraft应助小王采纳,获得10
41秒前
FashionBoy应助黄家宝采纳,获得10
42秒前
here完成签到 ,获得积分10
42秒前
hh完成签到,获得积分10
48秒前
冰雪痕完成签到 ,获得积分10
48秒前
49秒前
49秒前
懵懂的采梦完成签到,获得积分10
50秒前
小王完成签到,获得积分20
51秒前
jjl完成签到 ,获得积分10
52秒前
yuzhi完成签到,获得积分10
52秒前
53秒前
小王发布了新的文献求助10
54秒前
嚭嚭完成签到,获得积分10
56秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2000
줄기세포 생물학 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4529267
求助须知:如何正确求助?哪些是违规求助? 3968189
关于积分的说明 12294844
捐赠科研通 3633790
什么是DOI,文献DOI怎么找? 2000175
邀请新用户注册赠送积分活动 1036338
科研通“疑难数据库(出版商)”最低求助积分说明 926026