Machine learning-based radiomics analysis for predicting local recurrence of primary dermatofibrosarcoma protuberans after surgical treatment

医学 一致性 无线电技术 隆突性皮肤纤维肉瘤 回顾性队列研究 随机森林 放射科 核医学 外科 人工智能 内科学 计算机科学 病理
作者
Cuixiang Cao,Zhilong Yi,Mingwei Xie,Yang Xie,Xin Tang,Bin Tu,Yifeng Gao,Miaojian Wan
出处
期刊:Radiotherapy and Oncology [Elsevier]
卷期号:186: 109737-109737 被引量:2
标识
DOI:10.1016/j.radonc.2023.109737
摘要

Dermatofibrosarcoma protuberans (DFSP) is characterized by locally invasive growth patterns and high local recurrence rates. Accurately identifying patients with high local recurrence risk may benefit patients during follow-up and has potential value for making treatment decisions. This study aimed to investigate whether machine learning-based radiomics models could accurately predict the local recurrence of primary DFSP after surgical treatment.This retrospective study included a total of 146 patients with DFSP who underwent MRI scans between 2010 and 2016 from two different institutions: institution 1 (n = 104) for the training set and institution 2 (n = 42) for the external test set. Three radiomics random survival forest (RSF) models were developed using MRI images. Additionally, the performance of the Ki67 index was compared with the three RSF models in the external validation set.The average concordance index (C-index) scores of the RSF models based on fat-saturation T2W (FS-T2W) images, fat-saturation T1W with gadolinium contrast (FS-T1W + C) images, and both FS-T2W and FS-T1W + C images from 10-fold cross-validation in the training set were 0.855 (95% CI: 0.629, 1.00), 0.873 (95% CI: 0.711, 1.00), and 0.875 (95% CI: 0.688, 1.00), respectively. In the external validation set, the C-indexes of the three trained RSF models were higher than that of the Ki67 index (0.838, 0.754, and 0.866 vs. 0.601, respectively).Random survival forest models developed using radiomics features derived from MRI images were proven helpful for accurate prediction of local recurrence of primary DFSP after surgical treatment and showed better predicting performance than the Ki67 index.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI2S应助Michael采纳,获得10
1秒前
1秒前
wang完成签到,获得积分10
2秒前
漂亮幻莲完成签到,获得积分10
2秒前
yoyo完成签到,获得积分10
3秒前
weddcf发布了新的文献求助10
3秒前
地火丢发布了新的文献求助10
3秒前
3秒前
abu关闭了abu文献求助
4秒前
4秒前
4秒前
领导范儿应助蛀牙联盟采纳,获得10
4秒前
漂亮幻莲发布了新的文献求助10
6秒前
斯文败类应助这个真不懂采纳,获得10
6秒前
6秒前
6秒前
在水一方应助jxf采纳,获得10
6秒前
充电宝应助肥鱼不会飞采纳,获得10
7秒前
7秒前
7秒前
JW完成签到,获得积分10
8秒前
黄剑兴发布了新的文献求助10
8秒前
8秒前
9秒前
我是老大应助奋斗的珍采纳,获得10
9秒前
孤独语薇发布了新的文献求助10
10秒前
11秒前
laohu2发布了新的文献求助10
11秒前
Shirley应助carbonhan采纳,获得10
11秒前
好旺完成签到,获得积分10
12秒前
睡睡白白完成签到,获得积分10
12秒前
hoongyan完成签到 ,获得积分10
12秒前
科研通AI2S应助Yara.H采纳,获得10
13秒前
13秒前
13秒前
魔幻友菱发布了新的文献求助10
13秒前
Mannose完成签到,获得积分10
14秒前
14秒前
怒吼的狮子完成签到,获得积分10
14秒前
高分求助中
Evolution 10000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147773
求助须知:如何正确求助?哪些是违规求助? 2798855
关于积分的说明 7831859
捐赠科研通 2455728
什么是DOI,文献DOI怎么找? 1306927
科研通“疑难数据库(出版商)”最低求助积分说明 627945
版权声明 601587