材料科学
兴奋剂
光致发光
卤化物
发光
荧光粉
光电子学
斯托克斯位移
近红外光谱
光化学
光学
无机化学
化学
物理
作者
Chuang Wang,Xiaoxi Ma,Lei Zhao
标识
DOI:10.1016/j.ceramint.2023.05.096
摘要
In recent years, food detection, plant photosynthesis, night vision, and the identification of biological data have all benefited from near-infrared luminescence. However, developing metal halides emitting near-infrared (NIR) light is still difficult, which restricts further applicability. Here, we propose an insightful methodology to investigate the wideband NIR emission in metal halide Cs2ZnCl4 host by doping Sb3+. The phosphors are successfully synthesized by the coprecipitation method and the photoluminescent properties are explored in detail. Based on the spectroscopic information, experimental data with DFT calculations, and luminescence kinetics investigation of Sb3+ doped Cs2ZnCl4, the broadband red emission is caused by self-trapped excitons, which can be attributed to the 3P1–1S0 transitions. The spectra under the excitation at 351 nm exhibit an ultra-wideband emission with a center wavelength of 737 nm, an FHWM of 196 nm, and a significant Stokes shift of 386 nm. The NIR LED fabricated by Cs2ZnCl4: Sb3+ can also be used in night vision devices and biological identification. Our findings in Sb3+ doped Cs2ZnCl4 materials provide light on how doping induces emission centers and expand our understanding of the optical characteristics of doped lead-free metal halides for future research. This work also offers recommendations for broadening the range of uses for luminous metal halides and proposes an efficient method for developing fresh environmentally friendly and wideband emission NIR phosphors.
科研通智能强力驱动
Strongly Powered by AbleSci AI