枝晶(数学)
电解质
材料科学
阳极
金属
电化学
离子键合
离子电导率
化学工程
锂(药物)
纳米技术
阴极
扩散
化学
冶金
离子
电极
工程类
有机化学
物理化学
热力学
物理
内分泌学
医学
数学
几何学
作者
Yiju Li,Tianshuai Wang,Junjie Chen,Xudong Peng,Minghui Chen,Bin Liu,Yongbiao Mu,Lin Zeng,T.S. Zhao
标识
DOI:10.1016/j.scib.2023.06.008
摘要
Lithium (Li) metal with low electrochemical potential and high theoretical capacity is a promising anode material for next-generation batteries. However, the low reversibility and safety problems caused by the notorious dendrite growth significantly impede the development of high-energy-density lithium metal batteries (LMBs). Here, to enable a dendrite-free and highly reversible Li metal anode (LMA), we develop a cytomembrane-inspired artificial layer (CAL) with biomimetic ionic channels using a scalable spread coating method. The negatively charged CAL with uniform intraparticle and interparticle ionic channels facilitates the Li-ion transport and redistributes the Li-ion flux, contributing to stable and homogeneous Li stripping and plating. Furthermore, a robust underneath transition layer with abundant lithiophilic inorganic components is in-situ formed through the transformation of CAL during cycling, which promotes Li-ion diffusion and suppresses the continuous side reactions with the electrolyte. Additionally, the resulting cytomembrane-inspired artificial Janus layer (CAJL) displays an ultrahigh Young's modulus (≥10.7 GPa) to inhibit the dendrite growth. Consequently, the CAJL-protected LMA (Li@CAJL) is stably cycled with a high areal capacity of 10 mAh cm-2 at a high current density of 10 mA cm-2. More importantly, the effective CAJL modification realizes the stable operation of a practical 429.2 Wh kg-1 lithium-sulfur (Li-S) pouch cell using a low electrolyte/sulfur (E/S) ratio of 3 μL mg-1. The facile yet effective protection strategy of LMAs can promote the practical application of LMBs.
科研通智能强力驱动
Strongly Powered by AbleSci AI