Overcoming the strength-ductility trade-off and anisotropy of mechanical properties of Ti6Al4V with electron beam powder bed fusion

材料科学 延展性(地球科学) 钛合金 放电等离子烧结 合金 极限抗拉强度 脆性 复合材料 层状结构 延伸率 微观结构 冶金 蠕动
作者
Jiayin Li,Xiaotao Liu,Xuan Luo,Fei Gao,Chao Zhao,Bowen Ma,Dongdong Li,Chao Yang
出处
期刊:Materials Science and Engineering A-structural Materials Properties Microstructure and Processing [Elsevier]
卷期号:879: 145301-145301 被引量:9
标识
DOI:10.1016/j.msea.2023.145301
摘要

Achieving a combination of excellent ductility and mechanical property isotropy is highly desirable for conventional biomedical materials, although this has been a long-standing problem. Here, we present a novel approach, in situ alloying of Cu (3.5 wt%) into Ti6Al4V through electron beam powder bed fusion (EB-PBF), through which the aforementioned issues can be addressed. The ultimate tensile strength (UTS) and elongation (EL) to failure of the Ti6Al4V-3.5Cu (TAVC) alloy fabricated by EB-PBF were found to reach values of 1053 MPa and 15.3%, respectively, which are markedly superior to those of the PBF-EB/Ti6Al4V (UTS: 902 MPa; EL: 13.5%). However, an alloy with identical composition made by spark plasma sintering exhibited a significant brittleness characteristic (UTS: 1051 MPa; EL). Moreover, the generation of multiple micro/nanosized Ti2Cu phases (1–5 μm, 50–100 nm, and 5–10 nm) in the TAVC alloy samples is thought to contribute a significant strengthening (46.24%), which effectively prevents plastic deterioration caused by brittle lamellar (Ti2Cu + α-Ti) structures. Further investigation revealed that the ductile enhancement of the TVAC alloy can be attributed to the microstructural evolution that encompasses the generation of twin structures and spheroidization of α-Ti and results from the addition of Cu coupled with the intrinsic heat treatment during the EB-PBF manufacturing process. Our findings not only provide an in-depth understanding of the formation mechanism of multi-scale Ti2Cu precipitates but also offer critical guidance for improving the overall mechanical properties of Cu-containing biomedical titanium alloys.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
rsd完成签到 ,获得积分10
2秒前
3秒前
绕地球3圈发布了新的文献求助10
3秒前
许诺完成签到,获得积分10
4秒前
4秒前
LIU完成签到 ,获得积分10
4秒前
5秒前
Azur1完成签到 ,获得积分10
6秒前
654-2完成签到,获得积分10
6秒前
xiaohe完成签到,获得积分20
6秒前
xiguaruby完成签到,获得积分10
7秒前
7秒前
Felly完成签到,获得积分10
7秒前
1234完成签到,获得积分10
7秒前
FashionBoy应助sjy采纳,获得10
7秒前
量子星尘发布了新的文献求助50
8秒前
白的肥发布了新的文献求助10
8秒前
8秒前
阿钱小钱完成签到 ,获得积分10
8秒前
我爱学习完成签到,获得积分10
9秒前
9秒前
绕地球3圈完成签到,获得积分10
10秒前
11秒前
11秒前
叶落天涯完成签到 ,获得积分10
11秒前
包容的绿蕊完成签到,获得积分10
11秒前
大胆人英完成签到,获得积分10
12秒前
隐形的宝宝完成签到,获得积分10
12秒前
12秒前
12秒前
肉桂完成签到,获得积分10
13秒前
13秒前
14秒前
LiHaodong完成签到,获得积分10
15秒前
15秒前
LDDD完成签到,获得积分10
15秒前
pkinglu发布了新的文献求助10
15秒前
正直听白发布了新的文献求助10
16秒前
默默沛槐发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Agyptische Geschichte der 21.30. Dynastie 2000
Electron Energy Loss Spectroscopy 1500
Superabsorbent Polymers 2025 800
Rwandan diaspora online: Social connections and identity narratives 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5805254
求助须知:如何正确求助?哪些是违规求助? 5848462
关于积分的说明 15515697
捐赠科研通 4930591
什么是DOI,文献DOI怎么找? 2654668
邀请新用户注册赠送积分活动 1601464
关于科研通互助平台的介绍 1556460