High‐Density Plasmonic Nanopores for DNA Sensing at Ultra‐Low Concentrations by Plasmon‐Enhanced Raman Spectroscopy

纳米孔 拉曼光谱 材料科学 等离子体子 拉曼散射 纳米技术 分析物 表面增强拉曼光谱 分子 光谱学 光电子学 光学 化学 物理 量子力学 有机化学 物理化学
作者
Marzia Iarossi,Daniel Darvill,Aliaksandr Hubarevich,Jian‐An Huang,Yingqi Zhao,Angela Federica De Fazio,Devin B. O’Neill,Francesco Tantussi,Francesco De Angelis
出处
期刊:Advanced Functional Materials [Wiley]
卷期号:33 (41) 被引量:3
标识
DOI:10.1002/adfm.202301934
摘要

Abstract Solid‐state nanopores are implemented in new and promising platforms that are capable of sensing fundamental biomolecular constituents at the single‐molecule level. However, several limitations and drawbacks remain. For example, the current strategies based on both electrical and optical sensing suffer from low analyte capture rates and challenging nanofabrication procedures. In addition, their limited discrimination power hinders their application in the detection of complex molecular constructs. In contrast, Raman spectroscopy has recently demonstrated the ability to discriminate both nucleotides and amino acids. Herein, a plasmonic nanoassembly is proposed supporting nanopores at high density, in the order of 100 pores per µm 2 . These findings demonstrate that the device has a high capture rate in the range of a few f m . The pore size is ≈10 nm in diameter and provides an amplification of the electromagnetic field exceeding 10 3 in intensity at 785 nm. Owing to these features, single‐molecule detection is achieved by means of surface‐enhanced Raman scattering from a solution containing 50 f m DNA molecules (≈4.4 kilobase pairs). Notably, the reported spectra show an average number of 2.5 Raman counts per nucleotide. From this perspective, this number is not far from what is necessary to discriminate the DNA sequence.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
萧水白应助传统的鹏涛采纳,获得10
刚刚
1秒前
丘比特应助俞木逢朝采纳,获得10
2秒前
Aaron完成签到,获得积分10
5秒前
5秒前
fangzh完成签到,获得积分10
7秒前
7秒前
7秒前
聪慧可愁完成签到 ,获得积分10
9秒前
xiaowu应助xiaotudou95采纳,获得50
10秒前
10秒前
12秒前
13秒前
tomorrow505应助阳光衣采纳,获得10
13秒前
14秒前
聪慧可愁关注了科研通微信公众号
14秒前
科研通AI2S应助窦窦采纳,获得10
15秒前
笑笑丶不爱笑完成签到,获得积分10
15秒前
积极干饭完成签到 ,获得积分10
16秒前
JamesPei应助谦让友绿采纳,获得10
16秒前
17秒前
俞木逢朝发布了新的文献求助10
17秒前
lucky发布了新的文献求助10
17秒前
不加盐发布了新的文献求助10
18秒前
TTTaT完成签到,获得积分10
19秒前
木棉发布了新的文献求助10
20秒前
Akim应助科研通管家采纳,获得10
22秒前
丘比特应助科研通管家采纳,获得10
22秒前
22秒前
NexusExplorer应助科研通管家采纳,获得20
22秒前
Alvin完成签到,获得积分10
22秒前
Ava应助科研通管家采纳,获得10
22秒前
SciGPT应助科研通管家采纳,获得10
22秒前
情怀应助科研通管家采纳,获得10
22秒前
22秒前
Owen应助喵喵采纳,获得10
23秒前
dejavu完成签到,获得积分10
24秒前
tuanheqi应助萧水白采纳,获得100
25秒前
meina发布了新的文献求助10
26秒前
27秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
Research on managing groups and teams 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3330222
求助须知:如何正确求助?哪些是违规求助? 2959796
关于积分的说明 8597036
捐赠科研通 2638227
什么是DOI,文献DOI怎么找? 1444215
科研通“疑难数据库(出版商)”最低求助积分说明 669074
邀请新用户注册赠送积分活动 656613