亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multi-Scale Feature Interaction Network for Remote Sensing Change Detection

计算机科学 合并(版本控制) 稳健性(进化) 特征提取 特征(语言学) 变更检测 编码(社会科学) 模式识别(心理学) 人工智能 解码方法 数据挖掘 算法 情报检索 数学 生物化学 化学 语言学 哲学 统计 基因
作者
Chong Zhang,Yonghong Zhang,Haifeng Lin
出处
期刊:Remote Sensing [MDPI AG]
卷期号:15 (11): 2880-2880 被引量:2
标识
DOI:10.3390/rs15112880
摘要

Change detection (CD) is an important remote sensing (RS) data analysis technology. Existing remote sensing change detection (RS-CD) technologies cannot fully consider situations where pixels between bitemporal images do not correspond well on a one-to-one basis due to factors such as seasonal changes and lighting conditions. Existing networks construct two identical feature extraction branches through convolution, which share weights. The two branches work independently and do not merge until the feature mapping is sent to the decoder head. This results in a lack of feature information interaction between the two images. So, directing attention to the change area is of research interest. In complex backgrounds, the loss of edge details is very important. Therefore, this paper proposes a new CD algorithm that extracts multi-scale feature information through the backbone network in the coding stage. According to the task characteristics of CD, two submodules (the Feature Interaction Module and Detail Feature Guidance Module) are designed to make the feature information between the bitemporal RS images fully interact. Thus, the edge details are restored to the greatest extent while fully paying attention to the change areas. Finally, in the decoding stage, the feature information of different levels is fully used for fusion and decoding operations. We build a new CD dataset to further verify and test the model’s performance. The generalization and robustness of the model are further verified by using two open datasets. However, due to the relatively simple construction of the model, it cannot handle the task of multi-classification CD well. Therefore, further research on multi-classification CD algorithms is recommended. Moreover, due to the high production cost of CD datasets and the difficulty in obtaining them in practical tasks, future research will look into semi-supervised or unsupervised related CD algorithms.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Sunshine完成签到,获得积分10
1秒前
Privacy完成签到 ,获得积分10
1秒前
4秒前
5秒前
生动的沛白完成签到 ,获得积分10
6秒前
无谓发布了新的文献求助10
8秒前
英姑应助songjiatian采纳,获得10
8秒前
我是老大应助小巧静珊采纳,获得10
8秒前
Dawn完成签到,获得积分10
9秒前
执着秀发完成签到 ,获得积分10
10秒前
量子星尘发布了新的文献求助10
12秒前
moci123完成签到 ,获得积分10
12秒前
13秒前
冷酷花生完成签到 ,获得积分10
16秒前
王老裂完成签到 ,获得积分10
17秒前
17秒前
科目三应助科研通管家采纳,获得10
17秒前
17秒前
科目三应助科研通管家采纳,获得10
17秒前
科研通AI2S应助科研通管家采纳,获得10
17秒前
小二郎应助科研通管家采纳,获得10
17秒前
彭于晏应助科研通管家采纳,获得10
17秒前
18秒前
阿佳完成签到 ,获得积分10
18秒前
18秒前
22秒前
26秒前
27秒前
佛光辉发布了新的文献求助10
29秒前
齐羽完成签到,获得积分10
30秒前
笑点低的紫蓝完成签到,获得积分10
33秒前
Lucas应助点点采纳,获得10
33秒前
35秒前
蓝精灵完成签到 ,获得积分10
37秒前
佛光辉完成签到,获得积分10
37秒前
39秒前
41秒前
独指蜗牛完成签到 ,获得积分10
44秒前
云晓完成签到,获得积分10
46秒前
点点发布了新的文献求助10
46秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5787957
求助须知:如何正确求助?哪些是违规求助? 5703228
关于积分的说明 15473130
捐赠科研通 4916169
什么是DOI,文献DOI怎么找? 2646223
邀请新用户注册赠送积分活动 1593876
关于科研通互助平台的介绍 1548209