Multi-Scale Feature Interaction Network for Remote Sensing Change Detection

计算机科学 合并(版本控制) 稳健性(进化) 特征提取 特征(语言学) 变更检测 编码(社会科学) 模式识别(心理学) 人工智能 解码方法 数据挖掘 算法 情报检索 数学 哲学 统计 基因 化学 生物化学 语言学
作者
Chong Zhang,Yonghong Zhang,Haifeng Lin
出处
期刊:Remote Sensing [Multidisciplinary Digital Publishing Institute]
卷期号:15 (11): 2880-2880 被引量:2
标识
DOI:10.3390/rs15112880
摘要

Change detection (CD) is an important remote sensing (RS) data analysis technology. Existing remote sensing change detection (RS-CD) technologies cannot fully consider situations where pixels between bitemporal images do not correspond well on a one-to-one basis due to factors such as seasonal changes and lighting conditions. Existing networks construct two identical feature extraction branches through convolution, which share weights. The two branches work independently and do not merge until the feature mapping is sent to the decoder head. This results in a lack of feature information interaction between the two images. So, directing attention to the change area is of research interest. In complex backgrounds, the loss of edge details is very important. Therefore, this paper proposes a new CD algorithm that extracts multi-scale feature information through the backbone network in the coding stage. According to the task characteristics of CD, two submodules (the Feature Interaction Module and Detail Feature Guidance Module) are designed to make the feature information between the bitemporal RS images fully interact. Thus, the edge details are restored to the greatest extent while fully paying attention to the change areas. Finally, in the decoding stage, the feature information of different levels is fully used for fusion and decoding operations. We build a new CD dataset to further verify and test the model’s performance. The generalization and robustness of the model are further verified by using two open datasets. However, due to the relatively simple construction of the model, it cannot handle the task of multi-classification CD well. Therefore, further research on multi-classification CD algorithms is recommended. Moreover, due to the high production cost of CD datasets and the difficulty in obtaining them in practical tasks, future research will look into semi-supervised or unsupervised related CD algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赘婿应助文龙采纳,获得10
刚刚
聪慧的石头完成签到,获得积分10
刚刚
1秒前
小东同志完成签到,获得积分10
1秒前
1秒前
张同学快去做实验呀完成签到,获得积分10
1秒前
木子木子李完成签到,获得积分10
2秒前
画画完成签到,获得积分10
2秒前
子叶叶子完成签到,获得积分10
2秒前
2秒前
遂安完成签到,获得积分10
3秒前
3秒前
华仔应助z_king_d_23采纳,获得10
3秒前
3秒前
3秒前
苹果发布了新的文献求助10
4秒前
GG发布了新的文献求助10
4秒前
彭于晏应助erhan7采纳,获得30
4秒前
orixero应助meiyugao采纳,获得10
5秒前
亦玉完成签到,获得积分10
5秒前
5秒前
JamesPei应助刘文莉采纳,获得10
5秒前
weijie发布了新的文献求助10
6秒前
Jenaloe发布了新的文献求助10
7秒前
maofeng发布了新的文献求助10
7秒前
NexusExplorer应助abcc1234采纳,获得10
7秒前
小刺猬完成签到,获得积分10
7秒前
辛辛点灯完成签到 ,获得积分10
8秒前
fsky发布了新的文献求助30
8秒前
桐桐应助yyl采纳,获得10
9秒前
ryt完成签到,获得积分10
9秒前
void科学家发布了新的文献求助10
9秒前
wwk发布了新的文献求助10
9秒前
ilzhuzhu发布了新的文献求助10
9秒前
wxd完成签到,获得积分10
11秒前
11秒前
12秒前
15秒前
昭奚完成签到 ,获得积分10
16秒前
晚凝完成签到,获得积分10
16秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986641
求助须知:如何正确求助?哪些是违规求助? 3529109
关于积分的说明 11243520
捐赠科研通 3267633
什么是DOI,文献DOI怎么找? 1803801
邀请新用户注册赠送积分活动 881207
科研通“疑难数据库(出版商)”最低求助积分说明 808582