Multi-Scale Feature Interaction Network for Remote Sensing Change Detection

计算机科学 合并(版本控制) 稳健性(进化) 特征提取 特征(语言学) 变更检测 编码(社会科学) 模式识别(心理学) 人工智能 解码方法 数据挖掘 算法 情报检索 数学 生物化学 化学 语言学 哲学 统计 基因
作者
Chong Zhang,Yonghong Zhang,Haifeng Lin
出处
期刊:Remote Sensing [MDPI AG]
卷期号:15 (11): 2880-2880 被引量:2
标识
DOI:10.3390/rs15112880
摘要

Change detection (CD) is an important remote sensing (RS) data analysis technology. Existing remote sensing change detection (RS-CD) technologies cannot fully consider situations where pixels between bitemporal images do not correspond well on a one-to-one basis due to factors such as seasonal changes and lighting conditions. Existing networks construct two identical feature extraction branches through convolution, which share weights. The two branches work independently and do not merge until the feature mapping is sent to the decoder head. This results in a lack of feature information interaction between the two images. So, directing attention to the change area is of research interest. In complex backgrounds, the loss of edge details is very important. Therefore, this paper proposes a new CD algorithm that extracts multi-scale feature information through the backbone network in the coding stage. According to the task characteristics of CD, two submodules (the Feature Interaction Module and Detail Feature Guidance Module) are designed to make the feature information between the bitemporal RS images fully interact. Thus, the edge details are restored to the greatest extent while fully paying attention to the change areas. Finally, in the decoding stage, the feature information of different levels is fully used for fusion and decoding operations. We build a new CD dataset to further verify and test the model’s performance. The generalization and robustness of the model are further verified by using two open datasets. However, due to the relatively simple construction of the model, it cannot handle the task of multi-classification CD well. Therefore, further research on multi-classification CD algorithms is recommended. Moreover, due to the high production cost of CD datasets and the difficulty in obtaining them in practical tasks, future research will look into semi-supervised or unsupervised related CD algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
HHHH发布了新的文献求助10
1秒前
不配.应助张土豆采纳,获得10
1秒前
ya发布了新的文献求助10
1秒前
小石头完成签到 ,获得积分10
2秒前
郑石发布了新的文献求助10
3秒前
3秒前
顺利毕业发布了新的文献求助10
4秒前
4秒前
CipherSage应助明理的钥匙采纳,获得10
5秒前
CipherSage应助瘦瘦采纳,获得10
5秒前
不安青牛应助精明朋友采纳,获得10
6秒前
dadawang发布了新的文献求助10
7秒前
7秒前
叮咚完成签到,获得积分10
7秒前
奋斗的怀曼完成签到,获得积分10
8秒前
8秒前
XiangW完成签到,获得积分10
8秒前
sa发布了新的文献求助10
8秒前
孟子豪完成签到,获得积分10
9秒前
9秒前
研友_5Y9X75完成签到,获得积分10
9秒前
10秒前
郑石完成签到,获得积分10
10秒前
10秒前
Tony12发布了新的文献求助10
11秒前
12秒前
12秒前
12秒前
12秒前
小蘑菇应助明理的赛凤采纳,获得10
13秒前
kryptonite发布了新的文献求助10
13秒前
义气祥发布了新的文献求助10
14秒前
jing发布了新的文献求助10
14秒前
绿兔子发布了新的文献求助10
15秒前
ylz发布了新的文献求助10
15秒前
15秒前
搬砖人完成签到,获得积分10
16秒前
负责咖啡豆应助清弦采纳,获得10
16秒前
17秒前
俏皮的白柏完成签到,获得积分10
17秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3228868
求助须知:如何正确求助?哪些是违规求助? 2876648
关于积分的说明 8195944
捐赠科研通 2543914
什么是DOI,文献DOI怎么找? 1374103
科研通“疑难数据库(出版商)”最低求助积分说明 646872
邀请新用户注册赠送积分活动 621521